Page 33 - 《软件学报》2020年第11期
P. 33

刘中舟  等:动态基因调控网演化分析                                                              3349


                 [2]    Ruyssinck J, Demeester P, Dhaene  T, Saeys Y. Netter: Re-ranking gene network inference predictions using structural network
                     properties. BMC Bioinformatics, 2016,17(1):Article No.76.
                 [3]    Irrthum A, Wehenkel L, Geurts P, et al. Inferring regulatory networks from expression data using tree-based methods. PloS One,
                     2010,5(9):Article No.e12776.
                 [4]    Turki T, Wang JT, Rajikhan I. Inferring gene regulatory networks by combining supervised and unsupervised methods. In: Proc. of
                     the 15th IEEE Int’l Conf. on Machine Learning and Applications (ICMLA). IEEE, 2016. 140−145.
                 [5]    Yang J,  Yang  T,  Wu  D,  Lin  L,  Yang F,  Zhao J.  The integration of weighted human gene  association networks based on link
                     prediction. BMC Systems Biology, 2017,11(1):Article No.12.
                 [6]    Clauset A, Moore C, Newman ME. Hierarchical  structure and  the  prediction of missing  links  in  networks. Nature,  2008,453:
                     98−101.
                 [7]    Ud-Dean SM, Heise S, Klamt S,  Gunawan R.  TRaCE+:  Ensemble inference of gene regulatory networks from transcriptional
                     expression profiles of gene knock-out experiments. BMC Bioinformatics, 2016,17(1):Article No.252.
                 [8]    Ud-Dean  SM, Gunawan R. Ensemble inference and  inferability  of gene  regulatory  networks.  PLoS One, 2014,9(8):Article
                     No.e103812.
                 [9]    Leskovec J, Huttenlocher D, Kleinberg J. Predicting positive and negative links in online social networks. In: Proc. of the 19th Int’l
                     Conf. on World Wide Web. ACM, 2010. 641−650.
                [10]    Barzel B,  Barabási AL.  Network link prediction by global silencing of indirect  correlations. Nature  Biotechnology, 2013,31(8):
                     720−725.
                [11]    Carroll SB. Evo-Devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 2008,134(1):
                     25−36.
                [12]    Davidson EH. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. Elsevier, 2010.
                [13]    Monteiro  A, Podlaha  O.  Wings, horns,  and butterfly  eyespots: How do  complex traits  evolve? PLoS Biology,  2009,7(2):Article
                     No.e1000037.
                [14]    Peter IS, Davidson EH. Evolution of gene regulatory networks controlling body plan development. Cell, 2011,144(6):970−985.
                [15]    Getoor L, Diehl CP. Link mining: A survey. ACM Sigkdd Explorations Newsletter, 2005,7(2):3−12.
                [16]    Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. Journal of the Association for Information Science
                     and Technology, 2007,58(7):1019−1031.
                [17]    Adamic LA, Adar E. Friends and neighbors on the Web. Social Networks, 2003,25(3):211−230.
                [18]    Zhou T, Lü L, Zhang YC. Predicting missing links via local information. The European Physical Journal B, 2009,71:623−630.
                [19]    Lü L, Jin CH, Zhou T. Similarity index based on local paths for link prediction of complex networks. Physical Review E, 2009,
                     80(4):Article No.046122.
                [20]    Katz L. A new status index derived from sociometric analysis. Psychometrika, 1953,18(1):39−43.
                [21]    Hu WB, Wang H, Yan LP, Qiu ZY, Nie C, Du B. Event detection method for social networks based on node evolution fluctuations.
                     Ruan Jian Xue Bao/Journal of Software, 2017,28(10):2693−2703 (in Chinese with English abstract). http://www.jos.org.cn/1000-
                     9825/5153.htm [doi: 10.13328/j.cnki.jos.005153]
                [22]    Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning algorithms. In: Proc. of the 23rd Int’l Conf. on
                     Machine Learning. ACM, 2006. 161−168.
                [23]    Li XY, Du N, Li H, Li K, Gao J, Zhang AD. A deep learning approach to link prediction in dynamic networks. In: Proc. of the 2014
                     SIAM Int’l Conf. on Data Mining. SIAM, 2014. 289−297.
                [24]    Zhu  L,  Guo D, Yin J,  Ver Steeg  G,  Galstyan  A. Scalable temporal latent space inference for link prediction  in dynamic social
                     networks. IEEE Trans. on Knowledge and Data Engineering, 2016,28(10):2765−2777.
                [25]    Hu  WB, Wang  H, Yan LP,  Qiu ZY, Xiao L, Du B. Hybrid  quantum swarm intelligence indexing  for event  detection  in  social
                     networks. Ruan Jian Xue Bao/Journal of Software, 2016,27(11):2747−2762 (in Chinese with English abstract). http://www.jos.org.
                     cn/1000-9825/4910.htm [doi: 10.13328/j.cnki.jos.004910]
                [26]    Hu WB, Peng C, Liang HL, Du B. Event detection method based on link prediction for social network evolution. Ruan Jian Xue
                     Bao/Journal of Software, 2015,26(9):2339−2355  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/4703.htm
                     [doi: 10.13328/j.cnki.jos.004703]
                [27]    Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: Simple building blocks of complex networks.
                     Science, 2002,298(5594):824−827.
                [28]    Alon U. Network motifs: Theory and experimental approaches. Nature Reviews Genetics, 2007,8(6):450−461.
                [29]    Qi GJ, Aggarwal CC, Huang TS. Breaking the barrier to transferring link information across networks. IEEE Trans. on Knowledge
                     and Data Engineering, 2015,27(7):1741−1753.
                [30]    Ye J, Cheng H, Zhu Z, Chen M. Predicting positive and negative links in signed social networks by transfer learning. In: Proc. of
                     the 22nd Int’l Conf. on World Wide Web. ACM, 2013. 1477−1488.
   28   29   30   31   32   33   34   35   36   37   38