Page 317 - 《软件学报》2020年第10期
P. 317

孙晓鹏  等:局部各向异性的薄壳收缩变形                                                             3293


         时 Bridson 方法每帧变形需求解 3 次多项式的数量,第 3 列为求解 3 次多项式所消耗的时间,第 4 列为本文碰撞
         检测所消耗的时间,显然,基于本文预处理之后,碰撞检测的计算效率显著提高.
                           Table 2    The calculation efficiency comparison of collision detection
                                         表 2   碰撞检测计算效率对比
                           求解 3 次多项式数量   [22]    求解 3 次多项式耗时 [22] (s)   本文方法碰撞检测耗时(s)
                                     9
                   Wapiti       2.69×10              10 256.66              20.88
                                     9
                    Bear        1.70×10              6 772.54                5.66
                                     8
                   Kitten       7.49×10              2 911.07                4.63
                                     8
                    Hand        5.78×10              2 187.18                3.51
                                     7
                    Eight       1.76×10               67.71                  0.48
         7    结   语
             基于位置动力学的薄壳收缩变形存在材质局限性,且仅仅基于弹性变形能和弯曲变形能难以处理局部类
         球面结构收缩变形缓慢且细微的问题.本文提出薄壳收缩变形的弹性变形能,有效改进了材质局限性,能够真
         实、高效地模拟多种材质的薄壳收缩变形过程;通过适当选择弯曲系数,解决了收缩变形过程中的抖动问题;在
         弹性变形能和弯曲变形能基础上定义局部各向异性变形能,实现了局部类球结构的快速、显著、稳定的收缩变
         形,且适用于多种各向异性能量.另外,本文以轴向平行包围盒与非渗透滤波器作为预处理,提高碰撞检测效率.
             本文算法存在如下几个方面的不足:首先薄壳收缩变形幅度有限,如何自适应地选择最优弯曲系数,并细分
         重构薄壳模型的局部网格,以进一步降低收缩比,是算法优化的方向之一.其次,本文算法如何推广到膨胀变形
         也需要考虑.第三,动画设计虚拟场景中有些变形是大幅度的,甚至是夸张的,不合常理的,本文算法基于能量实
         现,难以应用于此类大幅度变形.

         References:
          [1]    Huang J,  Chen  J,  Xu  WW,  Bao  HJ.  A survey on fast simulation of  elastic objects. Frontiers of  Computer Science, 2019,13(3):
             443–459.
          [2]    Ma LK, Zhang YZ, Liu Y, Zhou K, Tong  X. Computational  design and  fabrication  of  soft  pneumatic  objects with  desired
             deformations. ACM Trans. on Graphics (TOG), 2017,36(6):239:1–239:12.
          [3]    Ly M, Casati R, Bertails-Descoubes F, Skouras M, Boissieux L. Inverse elastic shell design with contact and friction. ACM Trans.
             on Graphics (TOG), 2018,37(6):1–16.
          [4]    Grinspun E, Hirani AN, Desbrun M, Schröder P. Discrete shells. In: Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on
             Computer Animation. 2003. 62–67.
          [5]    Bender J, Müller M, Macklin M. A survey on position based dynamics, 2017. In: Proc. of the European Association for Computer
             Graphics: Tutorials. 2017. 1–31.
          [6]    Liu TT. Towards real-time simulation of hyperelastic materials [Ph.D. Thesis]. Philadelphia: University of Pennsylvania, 2018.
          [7]    Müller M, Heidelberger B, Hennix M, Ratcliff J.  Position  based  dynamics.  Journal  of Visual Communication and Image
             Representation, 2007,18(2):109–118.
          [8]    Dinev D, Liu TT, Kavan L. Stabilizing integrators for real-time physics. ACM Trans. on Graphics (TOG), 2018,37(1):1–19.
          [9]    Sifakis E, Barbič J. FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction.
             In: Proc. of the ACM SIGGRAPH 2012 Courses. 2012. 1–50.
         [10]    Tang  PB,  Huang DJ,  Wang Y, Gong RB, Tang  W, Ding YD.  Position based  balloon angioplasty.  In:  Proc.  of the  15th ACM
             SIGGRAPH Conf. on Virtual-reality Continuum and Its Applications in Industry. 2016. 391–400.
         [11]    Bender J, Weber D, Diziol R. Fast and stable cloth simulation based on multi-resolution shape matching. Computers & Graphics,
             2013,37(8):945–954.
         [12]    Deul  C,  Kugelstadt  T, Weiler M,  Bender J.  Direct position-based solver for stiff rods.  Computer  Graphics Forum, 2018,37(6):
             313–324.
   312   313   314   315   316   317   318   319   320   321   322