Page 290 - 《软件学报》2020年第10期
P. 290

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
         Journal of Software,2020,31(10):3266−3279 [doi: 10.13328/j.cnki.jos.005804]   http://www.jos.org.cn
         ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563


                                                    ∗
         距离约束的网格曲面曲线设计方法

                                      1
               1
                       2
                                              1
                              1
         金   耀 ,   宋   丹 ,   俞成海 ,   马文娟 ,   宋   滢 ,   何利力  1
         1
          (浙江理工大学  信息学院,浙江  杭州  310018)
         2 (天津大学  电气自动化与信息工程学院,天津  300072)
         通讯作者:  宋滢, E-mail: ysong@zstu.edu.cn

         摘   要:  针对现有网格曲面曲线设计方法鲁棒性差、收敛慢、适用范围窄等不足,提出一种基于距离约束的新方
         法.该方法将复杂的流形约束转化为距离约束,并与光滑、插值(逼近)约束共同描述成优化问题.求解时,用切平面逼
         近局部曲面,并将距离约束松弛成用点到切平面的距离.由于计算距离所用的曲线上的点与其对应的切点相互依赖,
         采用“整体-局部”交替迭代的策略,并运用 Gauss-Newton 法的思想控制其收敛行为:整体阶段,通过距离近似将其松
         弛成凸优化问题求解迭代步长;局部阶段,采用鲁棒高效的投影法将优化后的曲线映射到曲面以更新切平面;最后,
         利用切割平面法将所有处于松弛状态的折线映射到网格曲面.实验结果表明:该方法与现有方法相比,在效率、鲁棒
         性、可控性、应用范围等方面均表现出优势.
         关键词:  网格曲面;曲线设计;距离约束;交替迭代
         中图法分类号: TP391

         中文引用格式:  金耀,宋丹,俞成海,马文娟,宋滢,何利力.距离约束的网格曲面曲线设计方法.软件学报,2020,31(10):
         3266−3279. http://www.jos.org.cn/1000-9825/5804.htm
         英文引用格式: Jin Y, Song  D, Yu CH, Ma WJ,  Song  Y, He LL. Curve  design  method on  mesh surface based on  distance
         constraints. Ruan Jian Xue Bao/Journal of Software, 2020,31(10):3266−3279 (in Chinese). http://www.jos.org.cn/1000-9825/5804.
         htm

         Curve Design Method on Mesh Surface Based on Distance Constraints

               1
                           2
                                                       1
                                                                   1
                                         1
         JIN Yao ,   SONG Dan ,   YU Cheng-Hai ,   MA Wen-Juan ,   SONG Ying ,   HE Li-Li 1
         1 (School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
         2 (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)
         Abstract:    Existing  work of designing  curves on  mesh surface suffers  from issues such  as  weak robustness, slow  convergence,  and
         narrow application ranges. To address these issues, a distance constrained approach is proposed, which converts the complicated manifold
         constraint into distance constraint, and formulates the problem as a constrained optimization combining with smoothness and interpolation
         (approximation) constraints. To solve the optimization, the curve is discretized into a poly-line, and the distance constraint is relaxed to
         point-to-plane distance by approximating the local surface patch with tangent plane. Since the curve points and the corresponding tangent
         points involved in the distance calculation are interdependence, a “local/global” alternating iteration scheme is adopted and the idea of
         Gauss-Newton method is used to control the convergence behavior. In the global stage, the iterative step is solved by relaxingthe problem

            ∗  基金项目:  国家自然科学基金(61702458, 61602416);  浙江省自然科学基金(LY17F020031, LQ12F03012);  浙江省公益技术研
         究工业项目(2016C31072, 2017C31032);  浙江省重大科技专项重点社会发展项目(2015C03001),  浙江省服装个性化定制协同创新中
         心项目(浙教高科[2016] 63 号);  浙江理工大学科研启动基金(15032165-Y, 15032166-Y)
            Foundation item:  National  Natural Science Foundation of  China (61702458, 61602416); Natural Science Foundation of  Zhejiang
         Province of  China (LY17F020031,  LQ12F03012); Public-interest  Technology  Research for Industrial Project of  Zhejiang Province
         (2016C31072, 2017C31032); Science & Technology Program of Zhejiang Province (2015C03001); 2011 Collaborative Innovation Center
         for Garment Personalized Customization of Zhejiang Province (No.63, 2016); Startup Foundation of ZSTU (15032165-Y, 15032166-Y)
              收稿时间:   2018-07-16;  修改时间: 2018-09-26, 2018-12-03;  采用时间: 2018-12-28
   285   286   287   288   289   290   291   292   293   294   295