Page 288 - 《软件学报》2020年第10期
P. 288
3264 Journal of Software 软件学报 Vol.31, No.10, October 2020
[81] Jeong S, Solenthaler B, Pollefeys M, et al. Data-driven fluid simulations using regression forests. ACM Trans. on Graphics (TOG),
2015,34(6):199.
[82] Macklin M, Müller M. Position based fluids. ACM Trans. on Graphics (TOG), 2013,32(4):104.
[83] Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Trans. on Graphics (TOG), 2009,28(3):40.
[84] Demuth HB, Beale MH, de Jess O, et al. Neural Network Design. Martin Hagan, 2014.
[85] Rowley HA, Baluja S, Kanade T. Neural network-based face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence,
1998,20(1):23−38.
[86] Jiang H, Learned-Miller E. Face detection with the faster R-CNN. In: Proc. of the 12th IEEE Int’l Conf. on Automatic Face and
Gesture Recognition (FG 2017), the 1st Int’l Workshop on Adaptive Shot Learning for Gesture Understanding and Production
(ASL4GUP 2017). 2017. 650−657.
[87] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Advances in Neural
Information Processing Systems. 2012. 1−9.
[88] Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks. In: Proc. of the IEEE
CVPR. 2014. 1725−1732.
[89] Zhao Z, Wu Y. Attention-based convolutional neural networks for sentence classification. In: Proc. of the Annual Conf. of the Int’l
Speech Communication Association (INTERSPEECH). 2016. 705−709.
[90] Hsu ST, Moon C, Jones P, et al. A hybrid CNN-RNN alignment model for phrase-aware sentence classification. Short Papers, 2017,
2:443−449.
[91] Caballero J, Ledig C, Aitken A, et al. Real-time video super-resolution with spatio-temporal networks and motion compensation.
CoRR, 2016, abs/1611.0.
[92] Dong C, Loy CC, He K, et al. Image super-resolution using deep convolutional networks. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2016,38(2):295.
[93] Yang C, Yang X, Xiao X. Data-driven projection method in fluid simulation. Computer Animation and Virtual Worlds, 2016,
27(3-4):415−424.
[94] Tompson J, Schlachter K, Sprechmann P, et al. Accelerating Eulerian fluid simulation with convolutional networks. arXiv Preprint
arXiv: 1607.03597, 2016.
[95] Xiao X, Zhou Y, Wang H, et al. A novel CNN-based Poisson solver for fluid simulation. IEEE Trans. on Visualization and
Computer Graphics, 2018. 1. [doi: 10.1109/TVCG.2018.2873375]
[96] Xiao XY, Yang C, Yang XB. Adaptive learning-based projection method for smoke simulation. Computer Animation and Virtual
Worlds, 2018,29(3-4):e1837.
[97] Wiewel S, Becher M, Thuerey N. Latent-space physics: Towards learning the temporal evolution of fluid flow. ArXiv e-prints,
2018.
[98] Sato S, Morita T, Dobashi Y, et al. A data-driven approach for synthesizing high-resolution animation of fire. In: Proc. of the
Digital Production Symp. 2012. 37−42.
[99] Chu M, Thuerey N. Data-driven synthesis of smoke flows with CNN-based feature descriptors. ACM Trans. on Graphics, 2017,
36(4).
[100] Kim B, Azevedo VC, Thuerey N, et al. Deep fluids: A generative network for parameterized fluid simulations. ArXiv e-prints,
2018.
[101] Xie Y, Franz E, Chu M, et al. tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow. arXiv Preprint
arXiv: 1801.09710, 2018.
[102] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Advances in Neural Information Processing
Systems, Vol.27. 2014. 2672−2680.
[103] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. In:
Proc. of the ICLR. 2016. 1−16.
[104] Sato S, Dobashi Y, Kim T, et al. Example-based turbulence style transfer. ACM Trans. on Graphics (TOG), 2018,37(4):84:1−84:9.