Page 288 - 《软件学报》2020年第10期
P. 288

3264                                  Journal of Software  软件学报 Vol.31, No.10, October 2020

         [81]     Jeong S, Solenthaler B, Pollefeys M, et al. Data-driven fluid simulations using regression forests. ACM Trans. on Graphics (TOG),
             2015,34(6):199.
         [82]     Macklin M, Müller M. Position based fluids. ACM Trans. on Graphics (TOG), 2013,32(4):104.
         [83]     Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Trans. on Graphics (TOG), 2009,28(3):40.
         [84]     Demuth HB, Beale MH, de Jess O, et al. Neural Network Design. Martin Hagan, 2014.
         [85]     Rowley HA, Baluja S, Kanade T. Neural network-based face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence,
             1998,20(1):23−38.
         [86]     Jiang H, Learned-Miller E. Face detection with the faster R-CNN. In: Proc. of the 12th IEEE Int’l Conf. on Automatic Face and
             Gesture  Recognition (FG 2017), the 1st Int’l Workshop on  Adaptive Shot  Learning  for  Gesture  Understanding and Production
             (ASL4GUP 2017). 2017. 650−657.
         [87]     Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Advances in Neural
             Information Processing Systems. 2012. 1−9.
         [88]     Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks. In: Proc. of the IEEE
             CVPR. 2014. 1725−1732.
         [89]     Zhao Z, Wu Y. Attention-based convolutional neural networks for sentence classification. In: Proc. of the Annual Conf. of the Int’l
             Speech Communication Association (INTERSPEECH). 2016. 705−709.
         [90]    Hsu ST, Moon C, Jones P, et al. A hybrid CNN-RNN alignment model for phrase-aware sentence classification. Short Papers, 2017,
             2:443−449.
         [91]     Caballero J, Ledig C, Aitken A, et al. Real-time video super-resolution with spatio-temporal networks and motion compensation.
             CoRR, 2016, abs/1611.0.
         [92]     Dong C, Loy CC, He K, et al. Image super-resolution using deep convolutional networks. IEEE Trans. on Pattern Analysis and
             Machine Intelligence, 2016,38(2):295.
         [93]     Yang C, Yang X, Xiao X. Data-driven  projection method  in  fluid  simulation. Computer Animation and Virtual Worlds,  2016,
             27(3-4):415−424.
         [94]     Tompson J, Schlachter K, Sprechmann P, et al. Accelerating Eulerian fluid simulation with convolutional networks. arXiv Preprint
             arXiv: 1607.03597, 2016.
         [95]     Xiao X, Zhou Y, Wang H,  et  al. A  novel CNN-based  Poisson solver for  fluid  simulation.  IEEE Trans.  on Visualization and
             Computer Graphics, 2018. 1. [doi: 10.1109/TVCG.2018.2873375]
         [96]     Xiao XY, Yang C, Yang XB. Adaptive learning-based projection method for smoke simulation. Computer Animation and Virtual
             Worlds, 2018,29(3-4):e1837.
         [97]     Wiewel S, Becher M, Thuerey N. Latent-space physics: Towards learning the temporal evolution of fluid flow. ArXiv e-prints,
             2018.
         [98]     Sato  S, Morita T,  Dobashi Y,  et  al.  A data-driven  approach for synthesizing high-resolution  animation of fire. In: Proc. of the
             Digital Production Symp. 2012. 37−42.
         [99]    Chu M, Thuerey N. Data-driven synthesis of smoke flows with CNN-based feature descriptors. ACM Trans. on Graphics, 2017,
             36(4).
        [100]     Kim B, Azevedo VC, Thuerey N, et al. Deep fluids:  A generative network for parameterized fluid simulations. ArXiv  e-prints,
             2018.
        [101]     Xie Y, Franz E, Chu M, et al. tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow. arXiv Preprint
             arXiv: 1801.09710, 2018.
        [102]     Goodfellow I, Pouget-Abadie J,  Mirza  M,  et  al.  Generative  adversarial nets. In: Advances in  Neural Information Processing
             Systems, Vol.27. 2014. 2672−2680.
        [103]     Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. In:
             Proc. of the ICLR. 2016. 1−16.
        [104]     Sato S, Dobashi Y, Kim T, et al. Example-based turbulence style transfer. ACM Trans. on Graphics (TOG), 2018,37(4):84:1−84:9.
   283   284   285   286   287   288   289   290   291   292   293