Page 141 - 《软件学报》2020年第10期
P. 141

王康瑾  等:在离线混部作业调度与资源管理技术研究综述                                                      3117


         [36]    Novaković D, Vasić N,  Novaković S,  et al. Deepdive:  Transparently identifying and managing  performance interference in
             virtualized environments. In: Proc. of the Presented as part of the 2013 {USENIX} Annual Technical Conf. ({USENIX}{ATC} 13).
             2013. 219–230.
         [37]    Kambadur M, Moseley T, Hank R, et al. Measuring interference between live datacenter applications. In: Proc. of the Int’l Conf. on
             High Performance Computing, Networking, Storage and Analysis. IEEE, 2012. 1–12.
         [38]    Gan Y, Zhang Y,  Hu  K,  et al. Seer:  Leveraging big data to navigate  the  complexity  of performance debugging in  cloud
             microservices. In: Proc. of the 24th Int’l Conf. on Architectural Support for Programming Languages and Operating Systems. 2019.
             19–33.
         [39]    Romero F, Delimitrou C. Mage: Online and interference-aware scheduling for multi-scale heterogeneous systems. In: Proc. of the
             27th Int’l Conf. on Parallel Architectures and Compilation Techniques. 2018. 1–13.
         [40]    Delimitrou C, Kozyrakis C. Paragon: QoS-aware scheduling for heterogeneous datacenters. ACM SIGPLAN Notices, 2013,48(4):
             77–88.
         [41]    Delimitrou C, Kozyrakis C. ibench: Quantifying interference for datacenter applications. In: Proc. of the 2013 IEEE Int’l Symp. on
             Workload Characterization (IISWC). IEEE, 2013. 23–33.
         [42]    Zhang, Y, Laurenzano MA, Mars J, Tang L. Smite: Precise QoS prediction on real-system smt processors to improve utilization in
             warehouse scale computers. In: Proc. of the 47th Annual IEEE/ACM Int’l Symp. on Microarchitecture. IEEE, 2014. 406–418.
         [43]    Tang X, Wang H, Ma X, et al. Spread-n-share: Improving application performance and cluster throughput with resource-aware job
             placement. In: Proc. of the Int’l Conf. for High Performance Computing, Networking, Storage and Analysis. 2019. 1–15.
         [44]    Gan Y, Pancholi M, Cheng D, et al. Seer: Leveraging big data to navigate the complexity of cloud debugging. In: Proc. of the 10th
             USENIX Conf. on Hot Topics in Cloud Computing. 2018. 13.
         [45]    Delimitrou C, Kozyrakis C. Quasar: Resource-efficient and QoS-aware cluster management. ACM SIGPLAN Notices, 2014,49(4):
             127–144.
         [46]    Cortez E, Bonde A, Muzio A, et al. Resource central: Understanding and predicting workloads for improved resource management
             in large cloud platforms. In: Proc. of the 26th Symp. on Operating Systems Principles. ACM, 2017. 153–167.
         [47]    Li Q, Li Y, Tu BB, et al. QoS guarenteed dynamic resource in internet data centers. Chinese Journal of Computers, 2014,37(12):
             23952407 (in Chinese with English abstract).
         [48]    Delgado P, Dinu F, Kermarrec AM, et al. Hawk: Hybrid datacenter scheduling. In: Proc. of the 2015 {USENIX} Annual Technical
             Conf. ({USENIX}{ATC} 15). 2015. 499–510.
         [49]    Vasile MA, Pop F, Tutueanu RI, et al. HySARC 2: Hybrid scheduling algorithm based on resource clustering in cloud environments.
             In: Proc. of the Int’l Conf. on Algorithms and Architectures for Parallel Processing. Cham: Springer-Verlag, 2013. 416–425.
         [50]    Zhang Z, Li C, Tao Y, et al. Fuxi: A fault-tolerant resource management and job scheduling system at internet scale. Proc. of the
             VLDB Endowment, 2014,7(13):1393–1404.
         [51]    Llull Q, Fan S, Zahedi SM, et al. Cooper: Task colocation with cooperative games. In: Proc. of the 2017 IEEE Int’l Symp. on High
             Performance Computer Architecture (HPCA). IEEE, 2017. 421–432.
         [52]    Zhang Y, Prekas G, Fumarola GM, et al. History-based harvesting of spare cycles and storage in large-scale datacenters. In: Proc. of
             the 12th {USENIX} Symp. on Operating Systems Design and Implementation ({OSDI} 16). 2016. 755–770.
         [53]    Leverich J, Kozyrakis C. Reconciling high server utilization and sub-millisecond quality-of-service. In: Proc. of the 9th European
             Conf. on Computer Systems. 2014. 1–14.
         [54]    Duda  KJ,  Cheriton DR.  Borrowed-VirtualTime (BVT) Scheduling: Supporting latency-sensitive threads in a general-purpose
             scheduler. In: Proc. of the SOSP. 1999.
         [55]    Improve CPU utilization to 90%. https://cloud.tencent.com/developer/article/1519559
         [56]    Grosvenor MP, Schwarzkopf M, Gog I, et al. Queues Don’t matter when you can {JUMP} Them! In: Proc. of the 12th {USENIX}
             Symp. on Networked Systems Design and Implementation ({NSDI} 15). 2015. 1–14.
         [57]    Jeyakumar V, Alizadeh M, Mazieres D, et al. EyeQ: Practical network performance isolation at the edge. NSDI, 2013.
         [58]    Perry J, Ousterhout A, Balakrishnan H, et al. Fastpass: A centralized “zero-queue” datacenter network. In: Proc. of the 2014 ACM
             Conf. on SIGCOMM. 2014. 307–318.
         [59]    Vattikonda BC, Porter G, Vahdat A, et al. Practical TDMA for datacenter Ethernet. In: Proc. of the 7th ACM European Conf. on
             Computer Systems. 2012. 225–238.
         [60]    Vamanan B, Hasan  J, Vijaykumar TN. Deadline-aware  datacenter TCP  (D2TCP). ACM  SIGCOMM Computer Communication
             Review, 2012,42(4):115–126.
   136   137   138   139   140   141   142   143   144   145   146