Page 140 - 《软件学报》2020年第10期
P. 140

3116                                  Journal of Software  软件学报 Vol.31, No.10, October 2020

         [12]    Zhang X, Tune E, Hagmann R, et al. CPI 2: CPU performance isolation for shared compute clusters. In: Proc. of the 8th ACM
             European Conf. on Computer Systems. ACM, 2013.
         [13]    Lo D, Cheng L, Govindaraju R, et al. Heracles: Improving resource efficiency at scale. ACM SIGARCH Computer Architecture
             News, 2015,43(3):450–462.
         [14]    Mars J, Tang L, Hundt R, et al. Bubble-up: Increasing utilization in modern warehouse scale computers via sensible co-locations. In:
             Proc. of the 44th Annual IEEE/ACM Int’l Symp. on Microarchitecture. ACM, 2011. 248–259.
         [15]    Zhang SG, et al. Tail amplification in n-tier systems: A study of transient cross-resource contention attacks. In: Proc. of the 39th
             IEEE Int’l Conf. on Distributed Computing Systems (ICDCS). IEEE, 2019
         [16]    Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22–28.
         [17]    Kasture H, Sanchez D. Tailbench: A benchmark suite and evaluation methodology for latency-critical applications. In: Proc. of the
             2016 IEEE Int’l Symp. on Workload Characterization (IISWC). IEEE, 2016. 1–10.
         [18]    Garefalakis P, Karanasos K, Pietzuch P, et al. Medea: Scheduling of long running applications in shared production clusters. In:
             Proc. of the 13th EuroSys Conf. 2018. 1–13.
         [19]    Xu M, Buyya R. Brownout approach  for adaptive management  of  resources and applications  in cloud  computing  systems: A
             taxonomy and future directions. ACM Computing Surveys (CSUR), 2019,52(1):1–27.
         [20]    Amazon Blog. https://glinden.blogspot.jp/2006/11/marissa-mayer-at-web-20.html
         [21]    Card SK, Robertson GG, Mackinlay JD. The information visualizer: An information workspace. In: Proc. of the ACM SIGCHI Conf.
             on Human Factors in Computing Systems. New York: ACM Press, 1991. 181–188.
         [22]    Reiss C, Tumanov A, Ganger GR, et al. Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In: Proc. of the 3rd
             ACM Symp. on Cloud Computing. 2012. 1–13.
         [23]    Garg SK, Lakshmi J. Workload performance and interference on containers. In: Proc. of the 2017 IEEE SmartWorld, Ubiquitous
             Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing,
             Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2017. 1–6.
         [24]    Reiss C, Tumanov A, Ganger GR, et al. Towards understanding heterogeneous clouds at scale: Google trace analysis. Technical
             Report, Intel Science and Technology Center for Cloud Computing, 2012. 84.
         [25]    Cheng Y, Chai Z, Anwar A. Characterizing co-located datacenter workloads: An Alibaba case study. In: Proc. of the 9th Asia-
             Pacific Workshop on Systems. 2018. 1–3.
         [26]    Kozyrakis C. Resource efficient computing for warehouse-scale datacenters. In: Proc. of the 2013 Design, Automation & Test in
             Europe Conf. & Exhibition (DATE). IEEE, 2013. 1351–1356.
         [27]    Ghodsi A, Zaharia M, Hindman B, et al. Dominant resource fairness: Fair allocation of multiple resource types. NSDI, 2011,11
             (2011):24–24.
         [28]    Isard M, Prabhakaran V, Currey J, et al. Quincy: Fair scheduling for distributed computing clusters. In: Proc. of the ACM SIGOPS
             22nd Symp. on Operating Systems Principles. 2009. 261–276.
         [29]    Ousterhout K, Wendell P, Zaharia M, et al. Sparrow: Distributed, low latency scheduling. In: Proc. of the 24th ACM Symp. on
             Operating Systems Principles. 2013. 69–84.
         [30]    Liu Q, Yu Z. The elasticity and plasticity in semi-containerized co-locating cloud workload: A view from Alibaba trace. In: Proc. of
             the ACM Symp. on Cloud Computing. 2018. 347–360.
         [31]    Barve YD, Shekhar S, Chhokra A, et al. FECBench: A holistic interference-aware approach for application performance modeling.
             In: Proc. of the 2019 IEEE Int’l Conf. on Cloud Engineering (IC2E). IEEE, 2019. 211–221.
         [32]    Zhao JC, Cui HM, Feng XB. Analyzing cross-core performance interference on multi-core processors based on statistical learning.
             Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2558−2570 (in Chinese with English abstract). http://www.jos.org.cn/1000-
             9825/4482.htm [doi: 10.3724/SP.J.1001.2013.04482]
         [33]    Zhao J, Cui H, Xue J, et al. Predicting cross-core performance interference on multicore processors with regression analysis. IEEE
             Trans. on Parallel and Distributed Systems, 2015,27(5):1443–1456.
         [34]    Chen Q, Yang H, Guo M,  et al. Prophet: Precise  QoS prediction on  non-preemptive  accelerators to improve utilization  in
             warehouse-scale computers. ACM SIGOPS Operating Systems Review, 2017,51(2):17–32.
         [35]    Yang H, Breslow A, Mars  J,  et al.  Bubble-flux: Precise online  QoS  management for increased utilization in warehouse scale
             computers. ACM SIGARCH Computer Architecture News, 2013,41(3):607–618.
   135   136   137   138   139   140   141   142   143   144   145