Page 47 - 《运动与健康科学》(英文)2024年第2期
P. 47
TaggedAPTARAEndEffect of exercise on locomotor system 169
modulates the gene expression of receptors and the protein TaggedAPTARAListItem TaggedAPTARAListLabel9TaggedAPTARAEnd. Macdonell CW, Power KE, Chopek JW, Gardiner KR, Gardiner PF.
synthesis of neurotrophins, leading to an increase in neuronal Extensor motoneurone properties are altered immediately before and
excitability and changes in neuronal morphology that extended during fictive locomotion in the adult decerebrate rat. J Physiol
2015;593:2327–42TaggedAPTARAEnd.
dendritic growth and plasticity. Overall, we have reviewed a
TaggedAPTARAListItem TaggedAPTARAListLabel10TaggedAPTARAEnd. Beaumont E, Gardiner PF. Endurance training alters the biophysical proper-
diverse array of quality studies that use multidisciplinary ties of hindlimb motoneurons in rats. Muscle Nerve 2003;27:228–36TaggedAPTARAEnd.
approaches and various animal models to understand the adap- TaggedAPTARAListItem TaggedAPTARAListLabel11TaggedAPTARAEnd. Beaumont E, Gardiner P. Effects of daily spontaneous running on the
tations incurred on the vertebrate locomotor system due to electrophysiological properties of hindlimb motoneurones in rats. J
exercise. This investigation has significantly improved our Physiol 2002;540:129–38TaggedAPTARAEnd.
TaggedAPTARAListItem TaggedAPTARAListLabel12TaggedAPTARAEnd. Chen K, Ge R, Cheng Y, Dai Y. Three-week treadmill training changes
understanding of the subject while raising questions and
the electrophysiological properties of spinal interneurons in the mice.
hinting at directions for future research in this field. For Exp Brain Res 2019;237:2925–38TaggedAPTARAEnd.
instance, work remains to be done reconciling the observations TaggedAPTARAListItem TaggedAPTARAListLabel13TaggedAPTARAEnd. Button DC, Kalmar JM. Understanding exercise-dependent plasticity of
that exercise seemingly reduces AHP amplitude mediated by motoneurons using intracellular and intramuscular approaches. Appl
K(Ca) channels in cat and rat motoneurons during fictive loco- Physiol Nutr Metab 2019;44:1125–33TaggedAPTARAEnd.
TaggedAPTARAListItem TaggedAPTARAListLabel14TaggedAPTARAEnd. Power KE, Lockyer EJ, Botter A, Vieira T, Button DC. Endurance-exer-
motion but increases it in rats subjected to chronic exercise.
cise training adaptations in spinal motoneurones: Potential functional
Furthermore, our understanding of the human locomotor relevance to locomotor output and assessment in humans. Eur J Appl
system is greatly limited by the fact that most of these studies Physiol 2022;122:1367–81TaggedAPTARAEnd.
occurred in animal models. Moving forward, there is a need TaggedAPTARAListItem TaggedAPTARAListLabel15TaggedAPTARAEnd. Chen K, Dai Y. Chronic exercise increases excitability of lamina X
neurons through enhancement of persistent inward currents and dendritic
for the development of new methods and experimental designs
development in mice. J Physiol 2022;600:3775–93TaggedAPTARAEnd.
that will allow us to recapitulate the findings we have thus far
TaggedAPTARAListItem TaggedAPTARAListLabel16TaggedAPTARAEnd. Ge R, Dai Y. Three-week treadmill exercise enhances persistent inward
amassed in cats, rats, and mice, in humans.TaggedAPTARAEnd currents, facilitates dendritic plasticity, and upregulates the excitability
of dorsal raphe serotonin neurons in ePet-EYFP mice. Front Cell
Neurosci 2020;14:575626. doi:10.3389/fncel.2020.575626TaggedAPTARAEnd.
TaggedAPTARAH1AcknowledgmentsTaggedAPTARAEnd
TaggedAPTARAListItem TaggedAPTARAListLabel17TaggedAPTARAEnd. Shik ML, Severin FV, Orlovskiĭ GN. Control of walking and running by
TaggedAPTARAPThis study is supported by grants from the National Natural means of electric stimulation of the midbrain. Biofizika 1966;11:659–66.
[in Russian]TaggedAPTARAEnd.
Science Foundation of China (NSFC) to YD (32171129),
TaggedAPTARAListItem TaggedAPTARAListLabel18TaggedAPTARAEnd. Jordan LM. Factors determining motoneuron rhythmicity during fictive
from China Postdoctoral Science Foundation to YC
locomotion. Symp Soc Exp Biol 1983;37:423–44TaggedAPTARAEnd.
(2023M731112), and from NSFC to RG (32260216).TaggedAPTARAEnd TaggedAPTARAListItem TaggedAPTARAListLabel19TaggedAPTARAEnd. Meehan CF, Grondahl L, Nielsen JB, Hultborn H. Fictive locomotion in the
adult decerebrate and spinal mouse in vivo. J Physiol 2012;590:289–300TaggedAPTARAEnd.
TaggedAPTARAListItem TaggedAPTARAListLabel20TaggedAPTARAEnd. Shefchyk SJ, Jordan LM. Motoneuron input-resistance changes during
TaggedAPTARAH1Authors’ contributionsTaggedAPTARAEnd
fictive locomotion produced by stimulation of the mesencephalic loco-
TaggedAPTARAPYD and YC drafted the manuscript. All authors contributed motor region. J Neurophysiol 1985;54:1101–8TaggedAPTARAEnd.
TaggedAPTARAListItem TaggedAPTARAListLabel21TaggedAPTARAEnd. Gosgnach S, Quevedo J, Fedirchuk B, McCrea DA. Depression of group
to editorial changes in the manuscript. All authors have read
ia monosynaptic EPSPs in cat hindlimb motoneurones during fictive
and approved the final version of the manuscript, and agree locomotion. J Physiol 2000;526:639–52TaggedAPTARAEnd.
with the order of presentation of the authors.TaggedAPTARAEnd TaggedAPTARAListItem TaggedAPTARAListLabel22TaggedAPTARAEnd. Brownstone RM, Jordan LM, Kriellaars DJ, Noga BR, Shefchyk SJ. On
the regulation of repetitive firing in lumbar motoneurones during fictive
locomotion in the cat. Exp Brain Res 1992;90:441–55TaggedAPTARAEnd.
TaggedAPTARAH1Competing interestsTaggedAPTARAEnd
TaggedAPTARAListItem TaggedAPTARAListLabel23TaggedAPTARAEnd. Dai Y, Cheng Y, Fedirchuk B, Jordan LM, Chu J. Motoneuron output
regulated by ionic channels: A modeling study of motoneuron
TaggedAPTARAPThe authors declare that they have no competing interests.TaggedAPTARAEnd
frequency-current relationships during fictive locomotion. J Neurophy-
siol 2018;120:1840–58TaggedAPTARAEnd.
TaggedAPTARAListItem TaggedAPTARAListLabel24TaggedAPTARAEnd. Fedirchuk B, McCrea D, Dai Y, Jones K, Jordan L. Motoneuron
TaggedAPTARAH1ReferencesTaggedAPTARAEnd
frequency/current relationships during fictive locomotion in the cat.
TaggedAPTARAListItem TaggedAPTARAListLabel1TaggedAPTARAEnd. Brownstone RM. Key steps in the evolution of mammalian movement: A Available at: https://www.sfn.org/meetings/past-and-future-annual-meet
prolegomenal essay. Neuroscience 2020;450:135–41TaggedAPTARAEnd.TaggedAPTARAEnd ings/1971-1999-abstracts. [accessed 19.10.2023].TaggedAPTARAEnd
TaggedAPTARAListItem TaggedAPTARAListLabel2TaggedAPTARAEnd. Sandrow-Feinberg HR, Houl e JD. Exercise after spinal cord injury as an TaggedAPTARAListItem TaggedAPTARAListLabel25TaggedAPTARAEnd. Power KE, McCrea DA, Fedirchuk B. Intraspinally mediated state-
agent for neuroprotection, regeneration and rehabilitation. Brain Res dependent enhancement of motoneurone excitability during fictive
2015;1619:12–21TaggedAPTARAEnd. scratch in the adult decerebrate cat. J Physiol 2010;588:2839–57TaggedAPTARAEnd.
TaggedAPTARAListLabel3TaggedAPTARAEnd. Gardiner P, Dai Y, Heckman CJ. Effects of exercise training on alpha-
TaggedAPTARAListItem TaggedAPTARAListItem TaggedAPTARAListLabel26TaggedAPTARAEnd. Gilmore J, Fedirchuk B. The excitability of lumbar motoneurones in the
motoneurons. J Appl Physiol 2006;101:1228–36TaggedAPTARAEnd. neonatal rat is increased by a hyperpolarization of their voltage threshold for
TaggedAPTARAListLabel4TaggedAPTARAEnd. Power GA, Dalton BH, Gilmore KJ, Allen MD, Doherty TJ, Rice CL.
TaggedAPTARAListItem activation by descending serotonergic fibres. J Physiol 2004;558:213–24TaggedAPTARAEnd.
Maintaining motor units into old age: Running the final common TaggedAPTARAListItem TaggedAPTARAListLabel27TaggedAPTARAEnd. Brownstone RM, Gossard JP, Hultborn H. Voltage-dependent excitation
pathway. Eur J Transl Myol 2017;27:6597. doi:10.4081/ejtm.2017.6597TaggedAPTARAEnd. of motoneurones from spinal locomotor centres in the cat. Exp Brain Res
TaggedAPTARAListLabel5TaggedAPTARAEnd. Leiras R, Cregg JM, Kiehn O. Brainstem circuits for locomotion. Annu
TaggedAPTARAListItem 1994;102:34–44TaggedAPTARAEnd.
Rev Neurosci 2022;45:63–85TaggedAPTARAEnd. TaggedAPTARAListItem TaggedAPTARAListLabel28TaggedAPTARAEnd. Schmidt BJ. Afterhyperpolarization modulation in lumbar motoneurons
TaggedAPTARAListLabel6TaggedAPTARAEnd. Grillner S, El Manira A. Current principles of motor control, with special
TaggedAPTARAListItem during locomotor-like rhythmic activity in the neonatal rat spinal cord
reference to vertebrate locomotion. Physiol Rev 2020;100:271–320TaggedAPTARAEnd. in vitro. Exp Brain Res 1994;99:214–22TaggedAPTARAEnd.
TaggedAPTARAListLabel7TaggedAPTARAEnd. Kiehn O. Decoding the organization of spinal circuits that control loco-
TaggedAPTARAListItem TaggedAPTARAListItem TaggedAPTARAListLabel29TaggedAPTARAEnd. Power KE, Carlin KP, Fedirchuk B. Modulation of voltage-gated sodium
motion. Nat Rev Neurosci 2016;17:224–38TaggedAPTARAEnd. channels hyperpolarizes the voltage threshold for activation in spinal
TaggedAPTARAListLabel8TaggedAPTARAEnd. Krawitz S, Fedirchuk B, Dai Y, Jordan LM, McCrea DA. State-
TaggedAPTARAListItem motoneurones. Exp Brain Res 2012;217:311–22TaggedAPTARAEnd.
dependent hyperpolarization of voltage threshold enhances moto- TaggedAPTARAListItem TaggedAPTARAListLabel30TaggedAPTARAEnd. Dai Y, Jones KE, Fedirchuk B, McCrea DA, Jordan LM. A modelling
neurone excitability during fictive locomotion in the cat. J Physiol study of locomotion-induced hyperpolarization of voltage threshold in
2001;532:271–81TaggedAPTARAEnd. cat lumbar motoneurones. J Physiol 2002;544:521–36TaggedAPTARAEnd.