Page 127 - 《武汉大学学报(信息科学版)》2025年第10期
P. 127
2062 武 汉 大 学 学 报 (信 息 科 学 版) 2025 年 10 月
武汉大学学报(信息科学版), 2023, 48(7): 1204- Robots and Systems (IROS), Hamburg, Germany,
1215. 2015.
LIAO Jianchi, LI Xingxing, FENG Shaoquan. [11] LIU H M, ZHANG G F, BAO H J. Robust Key‑
GVIL: Tightly-Coupled GNSS PPP/Visual/INS/ frame-Based Monocular SLAM for Augmented Reali‑
LiDAR SLAM Based on Graph Optimization[J]. ty[C]//IEEE International Symposium on Mixed
Geomatics and Information Science of Wuhan Uni‑ and Augmented Reality (ISMAR-Adjunct), Meri‑
versity, 2023, 48(7): 1204-1215. da, Mexico, 2016.
[3] 楼益栋, 王昱升, 涂智勇, 等 . 融合多棱镜式雷达/ [12] ZHOU H Z, ZOU D P, PEI L, et al. Struct‑
IMU/RTK 的 轨 道 车 辆 高 精 度 实 时 定 位 与 建 图 SLAM: Visual SLAM with Building Structure Lines
[J]. 武汉大学学报(信息科学版), 2021, 46(12): [J]. IEEE Transactions on Vehicular Technology,
1802-1807. 2015, 64(4): 1364- 1375.
LOU Yidong, WANG Yusheng, TU Zhiyong, et [13] CHEN L, SUN L B, YANG T, et al. RGB-T
al. Real Time Localization and Mapping Integrating SLAM: A Flexible SLAM Framework by Combining
Multiple Prism LiDARs/IMU/RTK on Railway Lo‑ Appearance and Thermal Information[C]//IEEE In‑
comotive[J]. Geomatics and Information Science of ternational Conference on Robotics and Automation
Wuhan University, 2021, 46(12): 1802-1807. (ICRA), Singapore, 2017.
[4] 龚健雅 . 人工智能时代测绘遥感技术的发展机遇与 [14] ZHOU Y, GALLEGO G, SHEN S J. Event-
挑 战[J]. 武 汉 大 学 学 报(信 息 科 学 版), 2018, 43 Based Stereo Visual Odometry[J]. IEEE Transac‑
(12): 1788-1796. tions on Robotics, 2021, 37(5): 1433-1450.
GONG Jianya. Chances and Challenges for Develop‑ [15] 曾庆化, 罗怡雪, 孙克诚, 等 . 视觉及其融合惯性
ment of Surveying and Remote Sensing in the Age of 的 SLAM 技术发展综述[J]. 南京航空航天大学学
Artificial Intelligence[J]. Geomatics and Informa‑ 报, 2022, 54(6): 1007-1020.
tion Science of Wuhan University, 2018, 43(12): ZENG Qinghua, LUO Yixue, SUN Kecheng, et
1788-1796. al. Review on SLAM Technology Development for
[5] 邸凯昌, 万文辉, 赵红颖, 等 . 视觉 SLAM 技术的 Vision and Its Fusion of Inertial Information[J].
进 展 与 应 用[J]. 测 绘 学 报 , 2018, 47(6): 770- Journal of Nanjing University of Aeronautics and
779. Astronautics, 2022, 54(6): 1007-1020.
DI Kaichang, WAN Wenhui, ZHAO Hongying, et [16] MOURIKIS A I, ROUMELIOTIS S I. A Multi-
al. Progress and Applications of Visual SLAM[J]. state Constraint Kalman Filter for Vision-Aided Iner‑
Acta Geodaetica et Cartographica Sinica, 2018, 47 tial Navigation[C]//IEEE International Conference
(6): 770-779. on Robotics and Automation, Rome, Italy, 2007.
[6] MUR-ARTAL R, MONTIEL J M M, TARDÓS [17] LEUTENEGGER S, LYNEN S, BOSSE M, et
J D. ORB-SLAM: A Versatile and Accurate Mono‑ al. Keyframe-Based Visual-Inertial Odometry Using
cular SLAM System[J]. IEEE Transactions on Ro‑ Nonlinear Optimization[J]. The International Jour‑
botics, 2015, 31(5): 1147-1163. nal of Robotics Research, 2015, 34(3): 314-334.
[7] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: [18] FORSTER C, CARLONE L, DELLAERT F, et
An Open-Source SLAM System for Monocular, al. On-Manifold Preintegration for Real-Time Visual:
Stereo, and RGB-D Cameras[J]. IEEE Transac‑ Inertial Odometry[J]. IEEE Transactions on Robotics,
tions on Robotics, 2017, 33(5): 1255-1262. 2017, 33(1): 1-21.
[8] ENGEL J, KOLTUN V, CREMERS D. Direct [19] MUR-ARTAL R, TARDÓS J D. Visual-Inertial
Sparse Odometry[J]. IEEE Transactions on Pat‑ Monocular SLAM with Map Reuse[J]. IEEE Ro‑
tern Analysis and Machine Intelligence, 2018, 40 botics and Automation Letters, 2017, 2 (2) :
(3): 611-625. 796-803.
[9] KERL C, STURM J, CREMERS D. Dense Visual [20] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et
SLAM for RGB-D Cameras[C]//2013 IEEE/RSJ al. ORB-SLAM3: An Accurate Open-Source Li‑
International Conference on Intelligent Robots and brary for Visual, Visual‑Inertial, and Multimap
Systems, Tokyo, Japan, 2013. SLAM[J]. IEEE Transactions on Robotics, 2021,
[10] ENGEL J, SCHÖPS T, CREMERS D. Large- 37(6): 1874-1890.
Scale Direct SLAM with Stereo Cameras[C]//2015 [21] QIN T, LI P L, SHEN S J. VINS-Mono: A Ro‑
IEEE/RSJ International Conference on Intelligent bust and Versatile Monocular Visual-Inertial State

