Page 399 - 《软件学报》2026年第1期
P. 399
396 软件学报 2026 年第 37 卷第 1 期
[48] Broadcom Inc. Trident4/BCM56880 Series: High-capacity StrataXGS® trident4 ethernet switch series. 2023. https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm56880-series
®
TM
[49] Intel. Intel Tofino 2—Building on the breakthrough performance and programmability of the previous generation. 2023. https://www.
intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino-2.html
[50] Marwell. Marvell revolutionizes edge data center switching. 2019. https://www.marvell.com/company/newsroom/marvell-revolutionizes-
edge-data-center-switching.html
[51] Liu ZP, Lv GF, Wang JC, Yang XR. A programmable SRv6 processor for SFC. Electronics, 2022, 11(18): 2920. [doi: 10.3390/electronics
11182920]
[52] Li T, Yang H, Li JN, Liu RL, Sun ZG. ChipletNP: Chiplet-based agile customizable network processor architecture. Journal of Computer
Research and Development, 2024, 61(12): 2952–2968 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.202220998]
[53] Mayer A, Loreti P, Bracciale L, Lungaroni P, Salsano S, Filsfils C. Performance monitoring with Hˆ2: Hybrid kernel/eBPF data plane for
SRv6 based hybrid SDN. Computer Networks, 2021, 185: 107705. [doi: 10.1016/j.comnet.2020.107705]
[54] Cerrato I, Annarumma M, Risso F. Supporting fine-grained network functions through Intel DPDK. In: Proc. of the 3rd European
Workshop on Software Defined Networks. Budapest: IEEE, 2014. 1–6. [doi: 10.1109/EWSDN.2014.33]
[55] Scarpitta C, Sidoretti G, Mayer A, Salsano S, Abdelsalam A, Filsfils C. High performance delay monitoring for SRv6-based SD-WANs.
IEEE Trans. on Network and Service Management, 2024, 21(1): 1067–1081. [doi: 10.1109/TNSM.2023.3300151]
[56] Wei WT, Zhang XD, Pan SD, Liu LZ, Wang QY. EPM-SR: Efficient performance measurement framework for KPIs to support segment
routing over IPv6 Network. In: Proc. of the 22nd IEEE Int’l Conf. on Communication Technology. Nanjing: IEEE, 2022. 1800–1805.
[doi: 10.1109/ICCT56141.2022.10072658]
[57] Bradner S, McQuaid J. Benchmarking methodology for network interconnect devices. RFC 2544, 1999. https://www.rfc-editor.org/info/
rfc2544
[58] Loreti P, Mayer A, Lungaroni P, Lombardo F, Scarpitta C, Sidoretti G, Bracciale L, Ferrari M, Salsano S, Abdelsalam A, Gandhi R,
Filsfils C. SRv6-PM: A cloud-native architecture for performance monitoring of SRv6 networks. IEEE Trans. on Network and Service
Management, 2021, 18(1): 611–626. [doi: 10.1109/TNSM.2021.3052603]
[59] Deng SH, Gao X, Lu ZB, Gao XP. Packet injection attack and its defense in software-defined networks. IEEE Trans. on Information
Forensics and Security, 2018, 13(3): 695–705. [doi: 10.1109/TIFS.2017.2765506]
[60] Shimatani S, Kashiwazaki H, Nobukazu I. SRv6 network debugging support system assigning identifiers to SRH. In: Proc. of the 47th
IEEE Annual Computers, Software, and Applications Conf. Torino: IEEE, 2023. 518–525. [doi: 10.1109/COMPSAC57700.2023.00075]
[61] Polverini M, Cianfrani A, Listanti M, Siano G, Lavacca FG, Campanile CC. Investigating on black holes in segment routing networks:
Identification and detection. IEEE Trans. on Network and Service Management, 2023, 20(1): 14–29. [doi: 10.1109/TNSM.2022.3197453]
[62] Lo Bascio D, Lombardi F. On SRv6 security. Procedia Computer Science, 2022, 201: 406–412. [doi: 10.1016/j.procs.2022.03.054]
[63] Pădurean VA, Gasser O, Bush R, Feldmann A. SRv6: Is there anybody out there? In: Proc. of the 2022 IEEE European Symp. on Security
and Privacy Workshops. Genoa: IEEE, 2022. 252–257. [doi: 10.1109/EuroSPW55150.2022.00031]
[64] Zhou J, Li HW, Wu Q, Lai ZQ, Liu J. SR-TPP: Extending IPv6 segment routing to enable trusted and private network paths. In: Proc. of
the 2020 IEEE Symp. on Computers and Communications. Rennes: IEEE, 2020. 1–6. [doi: 10.1109/ISCC50000.2020.9219705]
[65] Feng AH, Francois P, Frenot S, Graf T, Du WT, Lucente P. Daisy: Practical anomaly detection in large BGP/MPLS and BGP/SRv6 VPN
networks. In: Proc. of the 2023 Applied Networking Research Workshop. San Francisco: ACM, 2023. 8–14. [doi: 10.1145/3606464.
3606470]
[66] Ren BB, Guo DK, Yuan YL, Tang GM, Wang WJ, Fu XM. Optimal deployment of SRv6 to enable network interconnection service.
IEEE/ACM Trans. on Networking, 2022, 30(1): 120–133. [doi: 10.1109/TNET.2021.3105959]
[67] Tian Y, Wang ZL, Yin X, Shi XG, Guo YY, Geng HJ, Yang JH. Traffic engineering in partially deployed segment routing over IPv6
network with deep reinforcement learning. IEEE/ACM Trans. on Networking, 2020, 28(4): 1573–1586. [doi: 10.1109/TNET.2020.
2987866]
[68] Liu SY, Lu HC, Chen Y, Chong BL, Luo T. Partial SRv6 deployment and routing optimization: A deep reinforcement learning approach.
In: Proc. of the 2023 IEEE Global Communications Conf. Kuala Lumpur: IEEE, 2023. 7133–7138. [doi: 10.1109/GLOBECOM54140.
2023.10436774]
附中文参考文献
[28] 严皓, 梁俊生. SRv6 Overlay, 专线业务新魔法. 深圳: 华为, 2019. https://www.huawei.com/cn/huaweitech/publication/winwin/network-

