Page 259 - 《软件学报》2026年第1期
P. 259
256 软件学报 2026 年第 37 卷第 1 期
[82] Wu CY, Amiri MJ, Asch J, Nagda H, Zhang QZ, Loo BT. FlexChain: An elastic disaggregated blockchain. Proc. of the VLDB
Endowment, 2022, 16(1): 23–36. [doi: 10.14778/3561261.3561264]
[83] Li JL, Michael E, Sharma NK, Szekeres A, Ports DRK. Just say NO to Paxos overhead: Replacing consensus with network ordering. In:
Proc. of the 12th USENIX Symp. on Operating Systems Design and Implementation. Savannah: USENIX Association, 2016. 467–483.
[84] Massey JL. Theory and practice of error control codes. Proc. of the IEEE, 1986, 74(9): 1293–1294. [doi: 10.1109/PROC.1986.13626]
[85] Reed IS, Solomon G. Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics, 1960,
8(2): 300–304. [doi: 10.1137/0108018]
[86] Mu S, Chen K, Wu YW, Zheng WM. When Paxos meets erasure code: Reduce network and storage cost in state machine replication. In:
Proc. of the 23rd Int’l Symp. on High-performance Parallel and Distributed Computing. Vancouver: ACM, 2014. 61–72. [doi: 10.1145/
2600212.2600218]
[87] Xu MW, Zhou Y, Qiao YY, Xu K, Wang Y, Yang J. ECRaft: A Raft based consensus protocol for highly available and reliable erasure-
coded storage systems. In: Proc. of the 27th IEEE Int’l Conf. on Parallel and Distributed Systems. Beijing: IEEE, 2021. 707–714. [doi:
10.1109/ICPADS53394.2021.00094]
[88] Jia YL, Xu GP, Sung CW, Mostafa S, Wu YL. HRaft: Adaptive erasure coded data maintenance for consensus in distributed networks.
In: Proc. of the 2022 IEEE Int’l Parallel and Distributed Processing Symp. Lyon: IEEE, 2022. 1316–1326. [doi: 10.1109/IPDPS53621.
2022.00130]
[89] Zhang M, Kang QH, Lee PPC. Minimizing network and storage costs for consensus with flexible erasure coding. In: Proc. of the 52nd
Int’l Conf. on Parallel Processing. Salt Lake City: ACM, 2023. 41–50. [doi: 10.1145/3605573.3605619]
[90] Kaklamanis I, Yang L, Alizadeh M. Poster: Coded broadcast for scalable leader-based BFT consensus. In: Proc. of the 2022 ACM
SIGSAC Conf. on Computer and Communications Security. Los Angeles: ACM, 2022. 3375–3377.
[91] Chawla N, Behrens HW, Tapp D, Boscovic D, Candan KS. Velocity: Scalability improvements in block propagation through rateless
erasure coding. In: Proc. of the 2019 IEEE Int’l Conf. on Blockchain and Cryptocurrency. Seoul: IEEE, 2019. 447–454. [doi: 10.1109/
BLOC.2019.8751427]
[92] Hellings J, Sadoghi M. Coordination-free Byzantine replication with minimal communication costs. In: Proc. of the 23rd Int’l Conf. on
Database Theory. Copenhagen: Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. 17:1–17:20. [doi: 10.4230/LIPIcs.ICDT.2020.
17]
[93] Cachin C, Tessaro S. Asynchronous verifiable information dispersal. In: Proc. of the 24th IEEE Symp. on Reliable Distributed Systems.
Orlando: IEEE, 2005. 191–201. [doi: 10.1109/RELDIS.2005.9]
[94] Stathakopoulou C, Pavlovic M, Vukolić M. State machine replication scalability made simple. In: Proc. of the 17th European Conf. on
Computer Systems. Rennes: ACM, 2022. 17–33. [doi: 10.1145/3492321.3519579]
[95] Gueta GG, Abraham I, Grossman S, Malkhi D, Pinkas B, Reiter M, Seredinschi DA, Tamir O, Tomescu A. SBFT: A scalable and
decentralized trust infrastructure. In: Proc. of the 49th Annual IEEE/IFIP Int’l Conf. on Dependable Systems and Networks. Portland:
IEEE, 2019. 568–580. [doi: 10.1109/DSN.2019.00063]
[96] Amiri MJ, Lai ZL, Patel L, Loo BT, Lo E, Zhou WC. Saguaro: An edge computing-enabled hierarchical permissioned blockchain. In:
Proc. of the 39th IEEE Int’l Conf. on Data Engineering. Anaheim: IEEE, 2023. 259–272. [doi: 10.1109/ICDE55515.2023.00027]
[97] Gupta S, Hellings J, Rahnama S, Sadoghi M. Proof-of-execution: Reaching consensus through fault-tolerant speculation. arXiv:1911.
00838, 2021.
[98] Nick J, Ruffing T, Seurin Y. MuSig2: Simple two-round Schnorr multi-signatures. In: Proc. of the 41st Annual Int’l Cryptology Conf.
on Advances in Cryptology. Springer, 2021. 189–221. [doi: 10.1007/978-3-030-84242-0_8]
[99] Sousa J, Bessani A. From Byzantine consensus to BFT state machine replication: A latency-optimal transformation. In: Proc. of the 9th
European Dependable Computing Conf. Sibiu: IEEE, 2012. 37–48. [doi: 10.1109/EDCC.2012.32]
[100] Gupta S, Hellings J, Sadoghi M. RCC: Resilient concurrent consensus for high-throughput secure transaction processing. In: Proc. of the
37th IEEE Int’l Conf. on Data Engineering. Chania: IEEE, 2021. 1392–1403. [doi: 10.1109/ICDE51399.2021.00124]
[101] Cao W, Liu ZJ, Wang P, Chen S, Zhu CF, Zheng S, Wang YH, Ma GQ. PolarFS: An ultra-low latency and failure resilient distributed
file system for shared storage cloud database. Proc. of the VLDB Endowment, 2018, 11(12): 1849–1862. [doi: 10.14778/3229863.
3229872]
[102] Gorenflo C, Lee S, Golab L, Keshav S. FastFabric: Scaling Hyperledger Fabric to 20 000 transactions per second. Int’l Journal of
Network Management, 2020, 30(5): e2099. [doi: 10.1002/nem.2099]
[103] Qi J, Chen XS, Jiang YP, Jiang JY, Shen TX, Zhao SX, Wang S, Zhang G, Chen L, Au MH, Cui HM. BIDL: A high-throughput, low-
latency permissioned blockchain framework for datacenter networks. In: Proc. of the 28th ACM SIGOPS Symp. on Operating Systems
Principles. ACM, 2021. 18–34. [doi: 10.1145/3477132.3483574]

