Page 258 - 《软件学报》2026年第1期
P. 258
彭泽顺 等: 面向跨地理区域联盟链的事务处理技术综述 255
[58] Rizvi S, Wong B, Keshav S. Canopus: A scalable and massively parallel consensus protocol. In: Proc. of the 13th Int’l Conf. on
Emerging Networking EXperiments and Technologies. Incheon: ACM, 2017. 426–438. [doi: 10.1145/3143361.3143394]
[59] Keshav S, Golab W, Wong B, Rizvi S, Gorbunov S. RCanopus: Making Canopus resilient to failures and Byzantine faults. arXiv:1810.
09300, 2019.
[60] Neiheiser R, Matos M, Rodrigues L. Kauri: Scalable BFT consensus with pipelined tree-based dissemination and aggregation. In: Proc.
of the 28th ACM SIGOPS Symp. on Operating Systems Principles. ACM, 2021. 35–48. [doi: 10.1145/3477132.3483584]
[61] Kokoris-Kogias E, Jovanovic P, Gailly N, Khoffi I, Gasser L, Ford B. Enhancing Bitcoin security and performance with strong
consistency via collective signing. In: Proc. of the 25th USENIX Conf. on Security Symp. Austin: USENIX Association, 2016.
279–296.
[62] Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly N, Syta E, Ford B. OmniLedger: A secure, scale-out, decentralized ledger via sharding.
In: Proc. of the 2018 IEEE Symp. on Security and Privacy. San Francisco: IEEE, 2018. 583–598. [doi: 10.1109/SP.2018.000-5]
[63] Dwork C, Lynch N, Stockmeyer L. Consensus in the presence of partial synchrony. Journal of the ACM, 1988, 35(2): 288–323. [doi: 10.
1145/42282.42283]
[64] Yin MF, Malkhi D, Reiter MK, Gueta GG, Abraham I. HotStuff: BFT consensus with linearity and responsiveness. In: Proc. of the 2019
ACM Symp. on Principles of Distributed Computing. Toronto: ACM, 2019. 347–356. [doi: 10.1145/3293611.3331591]
[65] Syta E, Tamas I, Visher D, Wolinsky DI, Jovanovic P, Gasser L, Gailly N, Khoffi I, Ford B. Keeping authorities “honest or bust” with
decentralized witness cosigning. In: Proc. of the 2016 IEEE Symp. on Security and Privacy. San Jose: IEEE, 2016. 526–545. [doi: 10.
1109/SP.2016.38]
[66] Syta E, Jovanovic P, Kogias EK, Gailly N, Gasser L, Khoffi I, Fischer MJ, Ford B. Scalable bias-resistant distributed randomness. In:
Proc. of the 2017 IEEE Symp. on Security and Privacy. San Jose: IEEE, 2017. 444–460. [doi: 10.1109/SP.2017.45]
[67] Micali S, Rabin M, Vadhan S. Verifiable random functions. In: Proc. of the 40th Annual Symp. on Foundations of Computer Science.
New York: IEEE, 1999. 120–130. [doi: 10.1109/SFFCS.1999.814584]
[68] Lu Y, Yu XY, Cao L, Madden S. Aria: A fast and practical deterministic OLTP database. Proc. of the VLDB Endowment, 2020, 13(12):
2047–2060. [doi: 10.14778/3407790.3407808]
[69] Arun B, Ravindran B. Scalable Byzantine fault tolerance via partial decentralization. Proc. of the VLDB Endowment, 2022, 15(9):
1739–1752. [doi: 10.14778/3538598.3538599]
[70] Fischer MJ, Lynch NA, Paterson MS. Impossibility of distributed consensus with one faulty process. Journal of the ACM, 1985, 32(2):
374–382. [doi: 10.1145/3149.214121]
2
[71] Mostéfaoui A, Moumen H, Raynal M. Signature-free asynchronous Byzantine consensus with t<n/3 and O(n ) messages. In: Proc. of the
2014 ACM Symp. on Principles of Distributed Computing. Paris: ACM, 2014. 2–9. [doi: 10.1145/2611462.2611468]
[72] Ben-Or M, Kelmer B, Rabin T. Asynchronous secure computations with optimal resilience (extended abstract). In: Proc. of the 13th
Annual ACM Symp. on Principles of Distributed Computing. Los Angeles: ACM, 1994. 183–192. [doi: 10.1145/197917.198088]
[73] Bracha G. Asynchronous Byzantine agreement protocols. Information and Computation, 1987, 75(2): 130–143. [doi: 10.1016/0890-540
1(87)90054-X]
[74] Shoup V. Practical threshold signatures. In: Proc. of the 2000 Int’l Conf. on the Theory and Application of Cryptographic Techniques.
Bruges: Springer, 2000. 207–220. [doi: 10.1007/3-540-45539-6_15]
[75] Desmedt Y. Threshold cryptosystems. In: Proc. of the 1992 Int’l Workshop on the Theory and Application of Cryptographic
Techniques. Queensland: Springer, 1992. 1–14.
[76] Boneh D, Lynn B, Shacham H. Short signatures from the Weil pairing. In: Proc. of the 7th Int’l Conf. on the Theory and Application of
Cryptology and Information Security. Gold Coast: Springer, 2001. 514–532. [doi: 10.1007/3-540-45682-1_30]
[77] Baek J, Zheng YL. Simple and efficient threshold cryptosystem from the gap Diffie-Hellman group. In: Proc. of the 2003 IEEE Global
Telecommunications Conf. San Francisco: IEEE, 2003. 1491–1495. [doi: 10.1109/GLOCOM.2003.1258486]
[78] Ben-Or M, El-Yaniv R. Resilient-optimal interactive consistency in constant time. Distributed Computing, 2003, 16(4): 249–262. [doi:
10.1109/GLOCOM.2003.1258486]
[79] Liu SY, Xu WB, Shan C, Yan XF, Xu TJ, Wang B, Fan L, Deng FX, Yan Y, Zhang H. Flexible advancement in asynchronous BFT
consensus. In: Proc. of the 29th Symp. on Operating Systems Principles. Koblenz: ACM, 2023. 264–280. [doi: 10.1145/3600006.
3613164]
[80] Poke M, Hoefler T. DARE: High-performance state machine replication on RDMA networks. In: Proc. of the 24th Int’l Symp. on High-
performance Parallel and Distributed Computing. Portland: ACM, 2015. 107–118. [doi: 10.1145/2749246.2749267]
[81] Wang C, Jiang JY, Chen XS, Yi N, Cui HM. APUS: Fast and scalable Paxos on RDMA. In: Proc. of the 2017 Symp. on Cloud
Computing. Santa Clara: ACM, 2017. 94–107. [doi: 10.1145/3127479.3128609]

