Page 189 - 《软件学报》2025年第12期
P. 189
5570 软件学报 2025 年第 36 卷第 12 期
JMLR, 2013. III-873–III-880.
[71] Shi YJ, Ying XH, Yang JF. Deep unsupervised domain adaptation with time series sensor data: A survey. Sensors, 2022, 22(15): 5507.
[doi: 10.3390/s22155507]
[72] Hu HL, Tang MJ, Bai CC. Datsing: Data augmented time series forecasting with adversarial domain adaptation. In: Proc. of the 29th
ACM Int’l Conf. on Information & Knowledge Management. ACM, 2020. 2061–2064. [doi: 10.1145/3340531.3412155]
[73] Lim B, Zohren S. Time-series forecasting with deep learning: A survey. Philosophical Trans. of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 2021, 379(2194): 20200209. [doi: 10.1098/rsta.2020.0209]
[74] Locatello F, Bauer S, Lucic M, Rätsch G, Gelly S, Schölkopf B, Bachem O. Challenging common assumptions in the unsupervised
learning of disentangled representations. In: Proc. of the 36th Int’l Conf. on Machine Learning. Long Beach: PMLR, 2019. 4114–4124.
[75] Yao WR, Chen GY, Zhang K. Temporally disentangled representation learning. arXiv:2210.13647, 2022.
[76] Delalleau O, Bengio Y. Shallow vs. deep sum-product networks. In: Proc. of the 25th Int’l Conf. on Neural Information Processing
Systems. Granada: Curran Associates Inc., 2011. 666–674.
[77] Ma DW. Time series forecasting based on causal network learning method [MS. Thesis]. Dalian: Dalian University of Technology, 2022
(in Chinese with English abstract). [doi: 10.26991/d.cnki.gdllu.2022.002228]
[78] Jin XY, Park Y, Maddix D, Wang H, Wang YY. Domain adaptation for time series forecasting via attention sharing. In: Proc. of the 39th
Int’l Conf. on Machine Learning. Baltimore: PMLR, 2022. 10280–10297.
[79] Furqon MT, Pratama M, Shiddiqi AM, Liu L, Habibullah H, Dogancay K. Time and frequency synergy for source-free time-series
domain adaptations. Information Sciences, 2025, 695: 121734. [doi: 10.1016/j.ins.2024.121734]
[80] Sugiyama M, Krauledat M, Müller KR. Covariate shift adaptation by importance weighted cross validation. The Journal of Machine
Learning Research, 2007, 8: 985–1005.
[81] Zheng Y, Ng I, Zhang K. On the identifiability of nonlinear ICA: Sparsity and beyond. In: Proc. of the 36th Conf. on Neural Information
Processing Systems (NeurIPS 2022). New Orleans, 16411–16422.
[82] Khemakhem I, Kingma D, Monti R, Hyvarinen A. Variational autoencoders and nonlinear ICA: A unifying framework. In: Proc. of the
23rd Int’l Conf. on Artificial Intelligence and Statistics. Palermo: PMLR, 2020. 2207–2217.
[83] Li ZJ, Xu ZH, Cai RC, Yang ZH, Yan YG, Hao ZF, Chen GY, Zhang K. Identifying semantic component for robust molecular property
prediction. arXiv:2311.04837, 2023.
[84] Stisen A, Blunck H, Bhattacharya S, Prentow TS, Kjærgaard MB, Dey A, Sonne T, Jensen MM. Smart devices are different: Assessing
and mitigatingmobile sensing heterogeneities for activity recognition. In: Proc. of the 13th ACM Conf. on Embedded Networked Sensor
Systems. Seoul: ACM, 2015. 127–140. [doi: 10.1145/2809695.2809718]
[85] Abdel-Basset M, Hawash H, Chang V, Chakrabortty RK, Ryan M. Deep learning for heterogeneous human activity recognition in
complex IoT applications. IEEE Internet of Things Journal, 2022, 9(8): 5653–5665. [doi: 10.1109/JIOT.2020.3038416]
[86] NairR, Ragab M, Mujallid OA, Mohammad KA, Mansour RF, Viju GK. Impact of wireless sensor data mining with hybrid deep learning
for human activity recognition. Wireless Communications and Mobile Computing, 2022, Article ID 9457536. [doi: 10.1155/2022/
9457536]
[87] Hu H, Ji X, Chi S, Jiao X. Conditional domain confusion networks for cross-domain detection. IEEE Trans. on Instrumentation and
Measurement, 2022, 71(10): 1–13. [doi: 10.1109/TIM.2022.3203453]
[88] Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A. A kernel two-sample test. The Journal of Machine Learning Research,
2012, 13: 723–773.
[89] Peng XC, Bai QX, Xia XD, Huang ZJ, Saenko K, Wang B. Moment matching for multi-source domain adaptation. In: Proc. of the 2019
IEEE/CVF Int’l Conf. on Computer Vision. Seoul. 2019. 1406–1415. [doi: 10.1109/ICCV.2019.00149]
[90] Nejjar I, Geissmann F, Zhao MJ, Taal C, Fink O. Domain adaptation via alignment of operation profile for remaining useful lifetime
prediction. Reliability Engineering & System Safety. 2024, 242: 109718. [doi: 10.48550/arXiv.2302.01704]
[91] Fang YQ, Wu JJ, Wang QQ, Qiu SJ, Bozoki A, Liu MX. Source-free collaborative domain adaptation via multi-perspective feature
enrichment for functional MRI analysis. Pattern Recognition, 2025, 157(c): 110912. [doi: 10.1016/j.patcog.2024.110912]
附中文参考文献:
[21] 庄福振, 罗平, 何清, 史忠植. 迁移学习研究进展. 软件学报, 2015, 26(1): 26–39. http://www.jos.org.cn/1000-9825/4631.htm [doi: 10.13328/
j.cnki.jos.004631]
[22] 付家慧. 深度迁移学习算法及其应用研究 [硕士学位论文]. 南京: 南京邮电大学, 2020. [doi: 10.27251/d.cnki.gnjdc.2020.000222]
[23] 李晓. 基于迁移学习的跨域图像分类方法研究 [博士学位论文]. 西安: 西安电子科技大学, 2017.

