Page 189 - 《软件学报》2025年第12期
P. 189

5570                                                      软件学报  2025  年第  36  卷第  12  期


                     JMLR, 2013. III-873–III-880.
                 [71]   Shi YJ, Ying XH, Yang JF. Deep unsupervised domain adaptation with time series sensor data: A survey. Sensors, 2022, 22(15): 5507.
                     [doi: 10.3390/s22155507]
                 [72]   Hu HL, Tang MJ, Bai CC. Datsing: Data augmented time series forecasting with adversarial domain adaptation. In: Proc. of the 29th
                     ACM Int’l Conf. on Information & Knowledge Management. ACM, 2020. 2061–2064. [doi: 10.1145/3340531.3412155]
                 [73]   Lim B, Zohren S. Time-series forecasting with deep learning: A survey. Philosophical Trans. of the Royal Society A: Mathematical,
                     Physical and Engineering Sciences, 2021, 379(2194): 20200209. [doi: 10.1098/rsta.2020.0209]
                 [74]   Locatello  F,  Bauer  S,  Lucic  M,  Rätsch  G,  Gelly  S,  Schölkopf  B,  Bachem  O.  Challenging  common  assumptions  in  the  unsupervised
                     learning of disentangled representations. In: Proc. of the 36th Int’l Conf. on Machine Learning. Long Beach: PMLR, 2019. 4114–4124.
                 [75]   Yao WR, Chen GY, Zhang K. Temporally disentangled representation learning. arXiv:2210.13647, 2022.
                 [76]   Delalleau  O,  Bengio  Y.  Shallow  vs.  deep  sum-product  networks.  In:  Proc.  of  the  25th  Int’l  Conf.  on  Neural  Information  Processing
                     Systems. Granada: Curran Associates Inc., 2011. 666–674.
                 [77]   Ma DW. Time series forecasting based on causal network learning method [MS. Thesis]. Dalian: Dalian University of Technology, 2022
                     (in Chinese with English abstract). [doi: 10.26991/d.cnki.gdllu.2022.002228]
                 [78]   Jin XY, Park Y, Maddix D, Wang H, Wang YY. Domain adaptation for time series forecasting via attention sharing. In: Proc. of the 39th
                     Int’l Conf. on Machine Learning. Baltimore: PMLR, 2022. 10280–10297.
                 [79]   Furqon  MT,  Pratama  M,  Shiddiqi  AM,  Liu  L,  Habibullah  H,  Dogancay  K.  Time  and  frequency  synergy  for  source-free  time-series
                     domain adaptations. Information Sciences, 2025, 695: 121734. [doi: 10.1016/j.ins.2024.121734]
                 [80]   Sugiyama M, Krauledat M, Müller KR. Covariate shift adaptation by importance weighted cross validation. The Journal of Machine
                     Learning Research, 2007, 8: 985–1005.
                 [81]   Zheng Y, Ng I, Zhang K. On the identifiability of nonlinear ICA: Sparsity and beyond. In: Proc. of the 36th Conf. on Neural Information
                     Processing Systems (NeurIPS 2022). New Orleans, 16411–16422.
                 [82]   Khemakhem I, Kingma D, Monti R, Hyvarinen A. Variational autoencoders and nonlinear ICA: A unifying framework. In: Proc. of the
                     23rd Int’l Conf. on Artificial Intelligence and Statistics. Palermo: PMLR, 2020. 2207–2217.
                 [83]   Li ZJ, Xu ZH, Cai RC, Yang ZH, Yan YG, Hao ZF, Chen GY, Zhang K. Identifying semantic component for robust molecular property
                     prediction. arXiv:2311.04837, 2023.
                 [84]   Stisen A, Blunck H, Bhattacharya S, Prentow TS, Kjærgaard MB, Dey A, Sonne T, Jensen MM. Smart devices are different: Assessing
                     and mitigatingmobile sensing heterogeneities for activity recognition. In: Proc. of the 13th ACM Conf. on Embedded Networked Sensor
                     Systems. Seoul: ACM, 2015. 127–140. [doi: 10.1145/2809695.2809718]
                 [85]   Abdel-Basset  M,  Hawash  H,  Chang  V,  Chakrabortty  RK,  Ryan  M.  Deep  learning  for  heterogeneous  human  activity  recognition  in
                     complex IoT applications. IEEE Internet of Things Journal, 2022, 9(8): 5653–5665. [doi: 10.1109/JIOT.2020.3038416]
                 [86]   NairR, Ragab M, Mujallid OA, Mohammad KA, Mansour RF, Viju GK. Impact of wireless sensor data mining with hybrid deep learning
                     for  human  activity  recognition.  Wireless  Communications  and  Mobile  Computing,  2022,  Article  ID  9457536.  [doi:  10.1155/2022/
                     9457536]
                 [87]   Hu H, Ji X, Chi S, Jiao X. Conditional domain confusion networks for cross-domain detection. IEEE Trans. on Instrumentation and
                     Measurement, 2022, 71(10): 1–13. [doi: 10.1109/TIM.2022.3203453]
                 [88]   Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A. A kernel two-sample test. The Journal of Machine Learning Research,
                     2012, 13: 723–773.
                 [89]   Peng XC, Bai QX, Xia XD, Huang ZJ, Saenko K, Wang B. Moment matching for multi-source domain adaptation. In: Proc. of the 2019
                     IEEE/CVF Int’l Conf. on Computer Vision. Seoul. 2019. 1406–1415. [doi: 10.1109/ICCV.2019.00149]
                 [90]   Nejjar I, Geissmann F, Zhao MJ, Taal C, Fink O. Domain adaptation via alignment of operation profile for remaining useful lifetime
                     prediction. Reliability Engineering & System Safety. 2024, 242: 109718. [doi: 10.48550/arXiv.2302.01704]
                 [91]   Fang  YQ,  Wu  JJ,  Wang  QQ,  Qiu  SJ,  Bozoki  A,  Liu  MX.  Source-free  collaborative  domain  adaptation  via  multi-perspective  feature
                     enrichment for functional MRI analysis. Pattern Recognition, 2025, 157(c): 110912. [doi: 10.1016/j.patcog.2024.110912]

                 附中文参考文献:
                 [21]   庄福振, 罗平, 何清, 史忠植. 迁移学习研究进展. 软件学报, 2015, 26(1): 26–39. http://www.jos.org.cn/1000-9825/4631.htm [doi: 10.13328/
                     j.cnki.jos.004631]
                 [22]   付家慧. 深度迁移学习算法及其应用研究 [硕士学位论文]. 南京: 南京邮电大学, 2020. [doi: 10.27251/d.cnki.gnjdc.2020.000222]
                 [23]   李晓. 基于迁移学习的跨域图像分类方法研究 [博士学位论文]. 西安: 西安电子科技大学, 2017.
   184   185   186   187   188   189   190   191   192   193   194