Page 186 - 《软件学报》2025年第12期
P. 186

李梓健 等: 基于隐变量解耦学习的时间序列领域自适应方法                                                    5567


                 表示. 基于可识别性理论, 本文设计了可识别基特征对齐领域自适应模型                       (DIVV), 利用变分推断解耦领域变化的
                 隐变量, 并采用基于正交特征对齐模块以解耦领域不变的隐变量. 最终, 本文采用领域不变特征进行时间序列分
                 类, 并在多个真实数据集上进行验证. 实验结果表明, 本文提出的理论和模型在真实场景中具有显著的有效性, 为
                 解决时间序列数据领域自适应问题提供了新的思路和方法.

                 References:
                  [1]   de Oliveira da Costa PR, Akçay A, Zhang YQ, Kaymak U. Remaining useful lifetime prediction via deep domain adaptation. Reliability
                     Engineering & System Safety, 2020, 195: 106682. [doi: 10.1016/j.ress.2019.106682]
                  [2]   Purushotham S, Carvalho W, Nilanon T, Liu Y. Variational recurrent adversarial deep domain adaptation. In: Proc. of the 5th Int’l Conf.
                     on Learning Representations. Toulon: OpenReview.net, 2017.
                  [3]   Tzeng E, Hoffffman J, Saenko K, Darrell T. Adversarial discriminative domain adaptation. In: Proc. of the 2017 IEEE Conf. on Computer
                     Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. 2962–2971. [doi: 10.1109/CVPR.2017.316]
                  [4]   Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V. Domain-adversarial training of
                     neural networks. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
                  [5]   Hoffman J, Tzeng E, Park T, Zhu JY, Isola P, Saenko K, Efros AA, Darrell T. Cycada: Cycle-consistent adversarial domain adaptation.
                     In: Proc. of the 35th Int’l Conf. on Machine Learning. Stockholm: PMLR, 2018. 1989–1998.
                  [6]   Long MS, Cao Y, Wang JM, Jordan MI. Learning transferable features with deep adaptation networks. In: Proc. of the 32nd Int’l Conf. on
                     Machine Learning. Lille: JMLR, 2015. 97–105.
                  [7]   Ozyurt Y, Feuerriegel S, Zhang C. Contrastive learning for unsupervised domain adaptation of time series. arXiv:2206.06243, 2023.
                  [8]   Stojanov  P,  Li  ZJ,  Gong  MM,  Cai  RC,  Carbonell  JG,  Zhang  K.  Domain  adaptation  with  invariant  representation  learning:  What
                     transformations  to  learn?  In:  Proc.  of  the  35th  Int’l  Conf.  on  Neural  Information  Processing  Systems.  Curran  Associates  Inc.,  2021.
                     24791–24803.
                  [9]   Bickel S, Brückner M, Scheffer T. Discriminative learning under covariate shift. The Journal of Machine Learning Research, 2009, 10:
                     2137–2155.
                 [10]   Gretton A, Smola A, Huang JY, Schmittfull M, Borgwardt K, Schölkopf B. Covariate shift by kernel mean matching. In: Quiñonero-
                     Candela J, Sugiyama M, Schwaighofer A, Lawrence ND, eds. Dataset Shift in Machine Learning. Cambridge: MIT Press, 2008. 131–160.
                     [doi: 10.7551/mitpress/7921.003.0013]
                 [11]   Schölkopf B, Locatello F, Bauer S, Ke NR, Kalchbrenner N, Goyal A, Bengio Y. Toward causal representation learning. Proc. of the
                     IEEE, 2021, 109(5): 612–634. [doi: 10.1109/JPROC.2021.3058954]
                 [12]   Cai RC, Chen JW, Li ZJ, Chen W, Zhang KL, Ye JJ, Li ZZ, Yang XY, Zhang ZJ. Time series domain adaptation via sparse associative
                     structure  alignment.  In:  Proc.  of  the  35th  AAAI  Conf.  on  Artificial  Intelligence.  AAAI,  2021.  6859–6867.  [doi:  10.1609/aaai.v35i8.
                     16846]
                 [13]   Li ZJ, Cai RC, Chen JW, Yan YG, Chen W, Zhang KL, Ye JJ. Time-series domain adaptation via sparse associative structure alignment:
                     Learning invariance and variance. arXiv:2205.03554, 2022.
                 [14]   Li ZJ, Cai RC, Fu TZJ, Hao ZF, Zhang K. Transferable time-series forecasting under causal conditional shift. arXiv:2111.03422, 2023.
                 [15]   Liu Q, Xue H. Adversarial spectral kernel matching for unsupervised time series domain adaptation. In: Proc. of the 30th Int’l Joint Conf.
                     on Artificial Intelligence. Montreal, 2021. 2744–2750.
                 [16]   He H, Queen O, Koker T, Cuevas C, Tsiligkaridis T, Zitnik M. Domain adaptation for time series under feature and label shifts. In: Proc.
                     of the 40th Int’l Conf. on Machine Learning. Honolulu: JMLR, 2023. 12746–12774.
                 [17]   Ben-David S, Blitzer J, Crammer K, Pereira F. Analysis of representations for domain adaptation. In: Proc. of the 20th Int’l Conf. on
                     Neural Information Processing Systems. Vancouver: MIT Press, 2006. 137–144.
                 [18]   Cai RC, Li ZJ, Wei PF, Qiao J, Zhang K, Hao ZF. Learning disentangled semantic representation for domain adaptation. In: Proc. of the
                     28th Int’l Joint Conf. on Artificial Intelligence. Macao: AAAI Press, 2019. 2060–2066.
                 [19]   Chen  C,  Fu  ZH,  Chen  ZH,  Jin  S,  Cheng  ZW,  Jin  XY,  Hua  XS.  HoMM:  Higher-order  moment  matching  for  unsupervised  domain
                     adaptation. In: Proc. of the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI Press, 2020. 3422–3429. [doi: 10.1609/aaai.
                     v34i04.5745]
                 [20]   Kim T, Cha M, Kim H, Lee JK, Kim J. Learning to discover cross-domain relations with generative adversarial networks. In: Proc. of the
                     34th Int’l Conf. on Machine Learning. Sydney: JMLR, 2017. 1857–1865.
                 [21]   Zhuang FZ, Luo P, He Q, Shi ZZ. Survey on transfer learning research. Ruan Jian Xue Bao/Journal of Software, 2015, 26(1): 26–39 (in
   181   182   183   184   185   186   187   188   189   190   191