Page 154 - 《软件学报》2025年第12期
P. 154

荣垂田 等: 多目标深度强化学习驱动的数据库系统参数优化技术                                                  5535


                 [22]   Liu X, Liu SY, Zhuang YK, Gao Y. Explainable reinforcement learning: Basic problems exploration and method survey. Ruan Jian Xue
                     Bao/Journal of Software, 2023, 34(5): 2300–2316 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6485.htm [doi: 10.
                     13328/j.cnki.jos.006485]
                 [23]   Hu TM, Luo B. PA2D-MORL: Pareto ascent directional decomposition based multi-objective reinforcement learning. In: Proc. of the
                     38th AAAI Conf. on Artificial Intelligence. Vancouver: AAAI Press, 2024. 12547–12555. [doi: 10.1609/aaai.v38i11.29148]
                 [24]   Nguyen TT, Nguyen ND, Vamplew P, Nahavandi S, Dazeley R, Lim CP. A multi-objective deep reinforcement learning framework.
                     Engineering Applications of Artificial Intelligence, 2020, 96: 103915. [doi: 10.1016/j.engappai.2020.103915]
                 [25]   Reymond  M,  Bargiacchi  E,  Nowé  A.  Pareto  conditioned  networks.  In:  Proc.  of  the  21st  Int’l  Conf.  on  Autonomous  Agents  and
                     Multiagent Systems. Auckland: Int’l Foundation for Autonomous Agents and Multiagent Systems, 2022. 1110–1118.
                 [26]   Castanet N, Sigaud O, Lamprier S. Stein variational goal generation for adaptive exploration in multi-goal reinforcement learning. In:
                     Proc. of the 40th Int’l Conf. on Machine Learning. Honolulu: JMLR, 2023. 151.
                 [27]   Hu  TM,  Luo  B,  Yang  CH,  Huang  TW.  MO-MIX:  Multi-objective  multi-agent  cooperative  decision-making  with  deep  reinforcement
                     learning. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2023, 45(10): 12098–12112. [doi: 10.1109/TPAMI.2023.3283537]
                 [28]   Alegre  LN,  Bazzan  ALC,  Roijers  DM,  Nowé  A,  da  Silva  BC.  Sample-efficient  multi-objective  learning  via  generalized  policy
                     improvement prioritization. In: Proc. of the 2023 Int’l Conf. on Autonomous Agents and Multiagent Systems. London: Int’l Foundation
                     for Autonomous Agents and Multiagent Systems, 2023. 2003–2012.
                 [29]   Watson LT, Haftka RT. Modern homotopy methods in optimization. Computer Methods in Applied Mechanics and Engineering, 1989,
                     74(3): 289–305. [doi: 10.1016/0045-7825(89)90053-4]


                 附中文参考文献:
                  [4]   李国良, 周煊赫. 轩辕: AI 原生数据库系统. 软件学报, 2020, 31(3): 831–844. http://www.jos.org.cn/1000-9825/5899.htm [doi: 10.13328/
                     j.cnki.jos.005899]
                 [22]   刘潇, 刘书洋, 庄韫恺, 高阳. 强化学习可解释性基础问题探索和方法综述. 软件学报, 2023, 34(5): 2300–2316. http://www.jos.org.cn/
                     1000-9825/6485.htm [doi: 10.13328/j.cnki.jos.006485]

                  附录  A

                    本文中实验部分使用的         MySQL  的参数和   PostgreSQL  的参数见表  A1  和表  A2.

                                            表 A1 MySQL   推荐参数   Knobs 调优详情

                                                                    +
                                       MySQL                 CDBTune                  ON-MODDPG
                         Knobs                初始值
                                       默认值           TPC-C  RW     RO    WO    TPC-C   RW     RO    WO
                       binlog_format  Statement  Mixed  Mixed  Mixed  Row  Row  Mixed  Mixed  Row  Mixed
                   innodb_buffer_pool_size  128 MB  4 GB  6 GB  8 GB  8 GB  8 GB  8 GB  8 GB  8 GB  8 GB
                   innodb_log_files_in_group  2  2     8     12     1     2      12    12     11     2
                    innodb_log_file_size  48 MB  0.5 GB  3.3 GB  0.1 GB  15 GB  39 GB  8.3 GB  8.3 GB  3.9 GB  32 GB
                    innodb_read_io_threads  4   12     3     1      1     31     52    64     1     28
                     binlog_cache_size  32 KB  32 MB  0.7 GB  0.4 GB  4 KB  4 KB  1 GB  4 KB  0.7 GB  0.8 GB
                  innodb_buffer_pool_instances  8  8   8     1      1     8      14     2     6     25
                    max_binlog_cache_size  18.4 EB  4 GB  4 GB  1.5 GB  4.7 GB  0.2 GB  3.5 GB  3 GB  4.4 GB  5 GB
                      binlog_checksum  CRC32   None  None  CRC32  CRC32  CRC32  None  CRC32  CRC32  None
                    innodb_purge_threads  1     1     25     15    25     29     4     21     32    11
                      max_binlog_size   1 GB   1 GB  0.4 GB  0.3 GB  69 MB  0.2 GB  0.2 GB  0.6 GB  0.2 GB  0.3 GB
                   innodb_write_io_threads  4   12    52     1      2     64     64    64     1      8
                     skip_name_resolve   Off    On    On     On    Off    On     Off   Off    On    On
                    innodb_file_per_table  On   On    Off    Off   Off    On     Off   On     On    Off
                      table_open_cache  2 000   512  524 288 524 288 397 935 524 288  442 241 380 371  16 715  216 686
                      max_connections   151    1 600  50 000  7 144  7 910  47 208  50 000  48 731  20 928  20 860
   149   150   151   152   153   154   155   156   157   158   159