Page 153 - 《软件学报》2025年第12期
P. 153

5534                                                      软件学报  2025  年第  36  卷第  12  期


                 References:
                  [1]   Zhao XY, Zhou XH, Li GL. Automatic database knob tuning: A survey. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(12):
                     12470–12490. [doi: 10.1109/TKDE.2023.3266893]
                                                                +
                  [2]   Zhang J, Zhou K, Li GL, Liu Y, Xie M, Cheng B, Xing JS. CDBTune : An efficient deep reinforcement learning-based automatic cloud
                     database tuning system. The VLDB Journal, 2021, 30(6): 959–987. [doi: 10.1007/s00778-021-00670-9]
                  [3]   Zhang XY, Chang Z, Li Y, Wu H, Tan J, Li FF, Cui B. Facilitating database tuning with hyper-parameter optimization: A comprehensive
                     experimental evaluation. Proc. of the VLDB Endowment, 2022, 15(9): 1808–1821. [doi: 10.14778/3538598.3538604]
                  [4]   Li GL, Zhou XH. XuanYuan: An AI-native database systems. Ruan Jian Xue Bao/Journal of Software, 2020, 31(3): 831–844 (in Chinese
                     with English abstract). http://www.jos.org.cn/1000-9825/5899.htm [doi: 10.13328/j.cnki.jos.005899]
                  [5]   Zhu YQ, Liu JX, Guo MY, Bao YG, Ma WL, Liu ZY, Song KP, Yang YC. BestConfig: Tapping the performance potential of systems via
                     automatic configuration tuning. In: Proc. of the 2017 Symp. on Cloud Computing. Santa Clara: ACM, 2017. 338–350. [doi: 10.1145/
                     3127479.3128605]
                  [6]   Duan SY, Thummala V, Babu S. Tuning database configuration parameters with iTuned. Proc. of the VLDB Endowment, 2009, 2(1):
                     1246–1257. [doi: 10.14778/1687627.1687767]
                  [7]   Van Aken D, Pavlo A, Gordon GJ, Zhang BH. Automatic database management system tuning through large-scale machine learning. In:
                     Proc. of the 2017 ACM Int’l Conf. on Management of Data. Chicago: ACM, 2017. 1009–1024. [doi: 10.1145/3035918.3064029]
                  [8]   Pavlo A, Angulo G, Arulraj J, Lin HB, Lin JX, Ma L, Menon P, Mowry TC, Perron M, Quah I, Santurkar S, Tomasic A, Toor S, van
                     Aken  D,  Wang  ZQ,  Wu  YJ,  Xian  R,  Zhang  TY.  Self-driving  database  management  systems.  In:  Proc.  of  the  8th  Biennial  Conf.  on
                     Innovative Data Systems Research. Chaminade: CIDR, 2017. 1.
                  [9]   Li GL, Zhou XH, Li SF, Gao B. QTune: A query-aware database tuning system with deep reinforcement learning. Proc. of the VLDB
                     Endowment, 2019, 12(12): 2118–2130. [doi: 10.14778/3352063.3352129]
                 [10]   Gur Y, Yang DS, Stalschus F, Reinwald B. Adaptive multi-model reinforcement learning for online database tuning. In: Proc. of the 24th
                     Int’l Conf. on Extending Database Technology. Nicosia: EDBT, 2021. 439–444.
                 [11]   Hayes  CF,  Rădulescu  R,  Bargiacchi  E,  Källström  J,  Macfarlane  M,  Reymond  M,  Verstraeten  T,  Zintgraf  LM,  Dazeley  R,  Heintz  F,
                     Howley E, Irissappane AA, Mannion P, Nowé A, Ramos G, Restelli M, Vamplew P, Roijers DM. A practical guide to multi-objective
                     reinforcement learning and planning. Autonomous Agents and Multi-agent Systems, 2022, 36(1): 26. [doi: 10.1007/s10458-022-09552-y]
                 [12]   Kanazawa T, Gupta C. Latent-conditioned policy gradient for multi-objective deep reinforcement learning. In: Proc. of the 32nd Int’l
                     Conf. on Artificial Neural Networks. Heraklion: Springer, 2023. 63–76. [doi: 10.1007/978-3-031-44223-0_6]
                 [13]   Yang RZ, Sun XY, Narasimhan K. A generalized algorithm for multi-objective reinforcement learning and policy adaptation. In: Proc. of
                     the 33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 1311.
                 [14]   Zhang XY, Wu H, Chang Z, Jin SW, Tan J, Li FF, Zhang TY, Cui B. ResTune: Resource oriented tuning boosted by meta-learning for
                     cloud databases. In: Proc. of the 2021 Int’l Conf. on Management of Data. ACM, 2021. 2102–2114. [doi: 10.1145/3448016.3457291]
                 [15]   Kanellis K, Ding C, Kroth B, Müller A, Curino C, Venkataraman S. LlamaTune: Sample-efficient DBMS configuration tuning. In: Proc.
                     of the VLDB Endowment, 2022, 15(11): 2953–2965. [doi: 10.14778/3551793.3551844]
                 [16]   Trummer  I.  DB-BERT:  A  database  tuning  tool  that  “reads  the  manual”.  In:  Proc.  of  the  2022  Int’l  Conf.  on  Management  of  Data.
                     Philadelphia: ACM, 2022. 190–203. [doi: 10.1145/3514221.3517843]
                 [17]   Ge JK, Chai YF, Chai YP. WATuning: A workload-aware tuning system with attention-based deep reinforcement learning. Journal of
                     Computer Science and Technology, 2021, 36(4): 741–761. [doi: 10.1007/s11390-021-1350-8]
                 [18]   Cai BQ, Liu Y, Zhang C, Zhang GY, Zhou K, Liu L, Li CH, Cheng B, Yang J, Xing JS. HUNTER: An online cloud database hybrid
                     tuning  system  for  personalized  requirements.  In:  Proc.  of  the  2022  Int’l  Conf.  on  Management  of  Data.  Philadelphia:  ACM,  2022.
                     646–659. [doi: 10.1145/3514221.3517882]
                 [19]   Wang JX, Trummer I, Basu D. Demonstrating UDO: A unified approach for optimizing transaction code, physical design, and system
                     parameters via reinforcement learning. In: Proc. of the 2021 Int’l Conf. on Management of Data. New York: ACM, 2021. 2794–2797.
                     [doi: 10.1145/3448016.3452754]
                 [20]   Saglam B, Mutlu FB, Cicek DC, Kozat SS. Actor prioritized experience replay. Journal of Artificial Intelligence Research, 2023, 78:
                     639–672. [doi: 10.1613/jair.1.14819]
                 [21]   Trummer I. The case for NLP-enhanced database tuning: Towards tuning tools that “read the manual”. Proc. of the VLDB Endowment,
                     2021, 14(7): 1159–1165. [doi: 10.14778/3450980.3450984]
   148   149   150   151   152   153   154   155   156   157   158