Page 153 - 《软件学报》2025年第12期
P. 153
5534 软件学报 2025 年第 36 卷第 12 期
References:
[1] Zhao XY, Zhou XH, Li GL. Automatic database knob tuning: A survey. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(12):
12470–12490. [doi: 10.1109/TKDE.2023.3266893]
+
[2] Zhang J, Zhou K, Li GL, Liu Y, Xie M, Cheng B, Xing JS. CDBTune : An efficient deep reinforcement learning-based automatic cloud
database tuning system. The VLDB Journal, 2021, 30(6): 959–987. [doi: 10.1007/s00778-021-00670-9]
[3] Zhang XY, Chang Z, Li Y, Wu H, Tan J, Li FF, Cui B. Facilitating database tuning with hyper-parameter optimization: A comprehensive
experimental evaluation. Proc. of the VLDB Endowment, 2022, 15(9): 1808–1821. [doi: 10.14778/3538598.3538604]
[4] Li GL, Zhou XH. XuanYuan: An AI-native database systems. Ruan Jian Xue Bao/Journal of Software, 2020, 31(3): 831–844 (in Chinese
with English abstract). http://www.jos.org.cn/1000-9825/5899.htm [doi: 10.13328/j.cnki.jos.005899]
[5] Zhu YQ, Liu JX, Guo MY, Bao YG, Ma WL, Liu ZY, Song KP, Yang YC. BestConfig: Tapping the performance potential of systems via
automatic configuration tuning. In: Proc. of the 2017 Symp. on Cloud Computing. Santa Clara: ACM, 2017. 338–350. [doi: 10.1145/
3127479.3128605]
[6] Duan SY, Thummala V, Babu S. Tuning database configuration parameters with iTuned. Proc. of the VLDB Endowment, 2009, 2(1):
1246–1257. [doi: 10.14778/1687627.1687767]
[7] Van Aken D, Pavlo A, Gordon GJ, Zhang BH. Automatic database management system tuning through large-scale machine learning. In:
Proc. of the 2017 ACM Int’l Conf. on Management of Data. Chicago: ACM, 2017. 1009–1024. [doi: 10.1145/3035918.3064029]
[8] Pavlo A, Angulo G, Arulraj J, Lin HB, Lin JX, Ma L, Menon P, Mowry TC, Perron M, Quah I, Santurkar S, Tomasic A, Toor S, van
Aken D, Wang ZQ, Wu YJ, Xian R, Zhang TY. Self-driving database management systems. In: Proc. of the 8th Biennial Conf. on
Innovative Data Systems Research. Chaminade: CIDR, 2017. 1.
[9] Li GL, Zhou XH, Li SF, Gao B. QTune: A query-aware database tuning system with deep reinforcement learning. Proc. of the VLDB
Endowment, 2019, 12(12): 2118–2130. [doi: 10.14778/3352063.3352129]
[10] Gur Y, Yang DS, Stalschus F, Reinwald B. Adaptive multi-model reinforcement learning for online database tuning. In: Proc. of the 24th
Int’l Conf. on Extending Database Technology. Nicosia: EDBT, 2021. 439–444.
[11] Hayes CF, Rădulescu R, Bargiacchi E, Källström J, Macfarlane M, Reymond M, Verstraeten T, Zintgraf LM, Dazeley R, Heintz F,
Howley E, Irissappane AA, Mannion P, Nowé A, Ramos G, Restelli M, Vamplew P, Roijers DM. A practical guide to multi-objective
reinforcement learning and planning. Autonomous Agents and Multi-agent Systems, 2022, 36(1): 26. [doi: 10.1007/s10458-022-09552-y]
[12] Kanazawa T, Gupta C. Latent-conditioned policy gradient for multi-objective deep reinforcement learning. In: Proc. of the 32nd Int’l
Conf. on Artificial Neural Networks. Heraklion: Springer, 2023. 63–76. [doi: 10.1007/978-3-031-44223-0_6]
[13] Yang RZ, Sun XY, Narasimhan K. A generalized algorithm for multi-objective reinforcement learning and policy adaptation. In: Proc. of
the 33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 1311.
[14] Zhang XY, Wu H, Chang Z, Jin SW, Tan J, Li FF, Zhang TY, Cui B. ResTune: Resource oriented tuning boosted by meta-learning for
cloud databases. In: Proc. of the 2021 Int’l Conf. on Management of Data. ACM, 2021. 2102–2114. [doi: 10.1145/3448016.3457291]
[15] Kanellis K, Ding C, Kroth B, Müller A, Curino C, Venkataraman S. LlamaTune: Sample-efficient DBMS configuration tuning. In: Proc.
of the VLDB Endowment, 2022, 15(11): 2953–2965. [doi: 10.14778/3551793.3551844]
[16] Trummer I. DB-BERT: A database tuning tool that “reads the manual”. In: Proc. of the 2022 Int’l Conf. on Management of Data.
Philadelphia: ACM, 2022. 190–203. [doi: 10.1145/3514221.3517843]
[17] Ge JK, Chai YF, Chai YP. WATuning: A workload-aware tuning system with attention-based deep reinforcement learning. Journal of
Computer Science and Technology, 2021, 36(4): 741–761. [doi: 10.1007/s11390-021-1350-8]
[18] Cai BQ, Liu Y, Zhang C, Zhang GY, Zhou K, Liu L, Li CH, Cheng B, Yang J, Xing JS. HUNTER: An online cloud database hybrid
tuning system for personalized requirements. In: Proc. of the 2022 Int’l Conf. on Management of Data. Philadelphia: ACM, 2022.
646–659. [doi: 10.1145/3514221.3517882]
[19] Wang JX, Trummer I, Basu D. Demonstrating UDO: A unified approach for optimizing transaction code, physical design, and system
parameters via reinforcement learning. In: Proc. of the 2021 Int’l Conf. on Management of Data. New York: ACM, 2021. 2794–2797.
[doi: 10.1145/3448016.3452754]
[20] Saglam B, Mutlu FB, Cicek DC, Kozat SS. Actor prioritized experience replay. Journal of Artificial Intelligence Research, 2023, 78:
639–672. [doi: 10.1613/jair.1.14819]
[21] Trummer I. The case for NLP-enhanced database tuning: Towards tuning tools that “read the manual”. Proc. of the VLDB Endowment,
2021, 14(7): 1159–1165. [doi: 10.14778/3450980.3450984]

