Page 84 - 《软件学报》2025年第10期
P. 84
胡跃 等: 基于 FPGA 的格基数字签名算法硬件优化 4481
3465481.3465756]
[24] Land G, Sasdrich P, Güneysu T. A hard crystal-implementing Dilithium on reconfigurable hardware. In: Proc. of the 20th Int’l Conf. on
Smart Card Research and Advanced Applications. Lübeck: Springer, 2021. 210–230. [doi: 10.1007/978-3-030-97348-3_12]
[25] Wang TF, Zhang C, Cao P, Gu DW. Efficient implementation of Dilithium signature scheme on FPGA SoC platform. IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, 2022, 30(9): 1158–1171. [doi: 10.1109/TVLSI.2022.3179459]
[26] Zhao CK, Zhang N, Wang HN, Yang BH, Zhu WP, Li ZD, Zhu M, Yin SY, Wei SJ, Liu LB. A compact and high-performance hardware
architecture for CRYSTALS-Dilithium. IACR Trans. on Cryptographic Hardware and Embedded Systems, 2022, 2022(1): 270–295. [doi:
10.46586/tches.v2022.i1.270-295]
[27] Beckwith L, Nguyen DT, Gaj K. High-performance hardware implementation of CRYSTALS-Dilithium. In: Proc. of the 2021 Int’l Conf.
on Field-programmable Technology (ICFPT 2021). Auckland: IEEE, 2021. 1–10. [doi: 10.1109/ICFPT52863.2021.9609917]
[28] Banerjee U, Ukyab TS, Chandrakasan AP. Sapphire: A configurable crypto-processor for post-quantum lattice-based protocols. IACR
Trans. on Cryptographic Hardware and Embedded Systems, 2019(4): 17–61. [doi: 10.13154/tches.v2019.i4.17-61]
[29] Zhou Z, He D, Liu Z, Luo M, Choo KKR. A software/hardware co-design of Crystals-Dilithium signature scheme. ACM Trans. on
Reconfigurable Technology and Systems, 2021, 14(2): 11. [doi: 10.1145/3447812]
[30] Zhao YF, Xie RQ, Xin GZ, Han J. A high-performance domain-specific processor with matrix extension of RISC-V for module-LWE
applications. IEEE Trans. on Circuits and Systems I: Regular Papers, 2022, 69(7): 2871–2884. [doi: 10.1109/TCSI.2022.3162593]
[31] Xin GZ, Han J, Yin TY, Zhou YC, Yang JW, Cheng X, Zeng XY. VPQC: A domain-specific vector processor for post-quantum
cryptography based on RISC-V architecture. IEEE Trans. on Circuits and Systems I: Regular Papers, 2020, 67(8): 2672–2684. [doi: 10.
1109/TCSI.2020.2983185]
[32] Wang TF, Zhang C, Zhang XL, Gu DW, Cao P. Optimized hardware-software co-design for Kyber and Dilithium on RISC-V SoC FPGA.
IACR Trans. on Cryptographic Hardware and Embedded Systems, 2024, 2024(3): 99–135. [doi: 10.46586/tches.v2024.i3.99-135]
[33] Mao GY, Chen DL, Li GY, Dai WC, Sanka AI, Koç CK, Cheung RCC. High-performance and configurable SW/HW co-design of post-
quantum signature CRYSTALS-Dilithium. ACM Trans. on Reconfigurable Technology and Systems, 2023, 16(3): 44. [doi: 10.1145/
3569456]
[34] Aikata A, Mert AC, Jacquemin D, Das A, Matthews D, Ghosh S, Roy SS. A unified cryptoprocessor for lattice-based signature and key-
exchange. IEEE Trans. on Computers, 2023, 72(6): 1568–1580. [doi: 10.1109/TC.2022.3215064]
[35] Mert AC, Karabulut E, Öztürk E, Savaş E, Aysu A. An extensive study of flexible design methods for the number theoretic transform.
IEEE Trans. on Computers, 2022, 71(11): 2829–2843. [doi: 10.1109/TC.2020.3017930]
[36] Yaman F, Mert AC, Öztürk E, Savaş E. A hardware accelerator for polynomial multiplication operation of CRYSTALS-KYBER PQC
scheme. In: Proc. of the 2021 Design, Automation & Test in Europe Conf. Exhibition (DATE). Grenoble: IEEE, 2021. 1020–1025. [doi:
10.23919/DATE51398.2021.9474139]
[37] Zhao XY, Liang ZC, Hu Y, Geng HX, Zhao YL. NTT architecture research and its FPGA hardware optimization implementation.
Chinese Journal of Computers, 2023, 46(12): 2670–2686 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2023.02670]
[38] Xing YF, Li SG. A compact hardware implementation of CCA-secure key exchange mechanism CRYSTALS-KYBER on FPGA. IACR
Trans. on Cryptographic Hardware and Embedded Systems, 2021, 2021(2): 328–356. [doi: 10.46586/tches.v2021.i2.328-356]
[39] Hu Y, Zhao XY, Liu YX, Zhao YL. Hardware implementation of lattice-based key encapsulation mechanism algorithm OSKR/OKAI.
Chinese Journal of Computers, 2023, 46(6): 1156–1171 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2023.01156]
[40] Mookherjee S, DeBrunner L, DeBrunner V. A low power radix-2 FFT accelerator for FPGA. In: Proc. of the 49th Asilomar Conf. on
Signals, Systems and Computers. Pacific Grove: IEEE, 2015. 447–451. [doi: 10.1109/ACSSC.2015.7421167]
[41] Dang VB, Mohajerani K, Gaj K. High-speed hardware architectures and FPGA benchmarking of CRYSTALS-Kyber, NTRU, and Saber.
IEEE Trans. on Computers, 2023, 72(2): 306–320. [doi: 10.1109/TC.2022.3222954]
[42] Barrett P. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard digital signal processor. In:
Odlyzko AM, ed. Proc. on Advances in Cryptology—CRYPTO 1986. Berlin: Springer, 1987. 311–323. [doi: 10.1007/3-540-47721-7_24]
[43] Montgomery PL. Modular multiplication without trial division. Mathematics of Computation, 1985, 44(170): 519–521. [doi: 10.1090/
S0025-5718-1985-0777282-X]
附中文参考文献:
[37] 赵旭阳, 梁志闯, 胡跃, 耿合详, 赵运磊. NTT 架构研究及其 FPGA 硬件优化实现. 计算机学报, 2023, 46(12): 2670–2686. [doi:
10.11897/SP.J.1016.2023.02670]

