Page 62 - 《软件学报》2025年第10期
P. 62
陈颖 等: 具有用户自主链接及验证者条件撤销的格基群签名 4459
[9] Peikert C, Shiehian S. Noninteractive zero knowledge for NP from (plain) learning with errors. In: Proc. of the 39th Annual Int’l
Cryptology Conf. on Advances in Cryptology. Santa Barbara: Springer, 2019. 89–114. [doi: 10.1007/978-3-030-26948-7_4]
[10] Boneh D, Shacham H. Group signatures with verifier-local revocation. In: Proc. of the 11th ACM Conf. on Computer and
Communications Security. Washington: ACM, 2004. 168–177. [doi: 10.1145/1030083.1030106]
[11] Diaz J, Lehmann A. Group signatures with user-controlled and sequential linkability. In: Proc. of the 24th IACR Int’l Conf. on Practice
and Theory of Public Key Cryptography. Springer, 2021. 360–388. [doi: 10.1007/978-3-030-75245-3_14]
[12] Langlois A, Ling S, Nguyen K, Wang HX. Lattice-based group signature scheme with verifier-local revocation. In: Proc. of the 17th Int’l
Conf. on Public-key Cryptography. Buenos Aires: Springer, 2014. 345–361. [doi: 10.1007/978-3-642-54631-0_20]
[13] Fiore D, Garms L, Kolonelos D, Soriente C, Tucker I. Ring signatures with user-controlled linkability. In: Proc. of the 27th European
Symp. on Research in Computer Security. Copenhagen: Springer, 2022. 405–426. [doi: 10.1007/978-3-031-17146-8_20]
[14] Bellare M, Poettering B, Stebila D. Deterring certificate subversion: Efficient double-authentication-preventing signatures. In: Proc. of the
2017 Int’l Conf. on Practice and Theory of Public-key Cryptography. Amsterdam: Springer, 2017. 121–151. [doi: 10.1007/978-3-662-
54388-7_5]
[15] Ling S, Nguyen K, Wang HX, Xu YH. Lattice-based group signatures: Achieving full dynamicity with ease. In: Proc. of the 15th Int’l
Conf. on Applied Cryptography and Network Security. Kanazawa: Springer, 2017. 293–312. [doi: 10.1007/978-3-319-61204-1_15]
[16] Esgin MF, Steinfeld R, Liu DX, Ruj S. Efficient hybrid exact/relaxed lattice proofs and applications to rounding and VRFs. In: Proc. of
the 43rd Annual Int’l Cryptology Conf. on Advances in Cryptology. Santa Barbara: Springer, 2023. 484–517. [doi: 10.1007/978-3-031-
38554-4_16]
[17] Lyubashevsky V, Nguyen NK, Plançon M, Seiler G. Shorter lattice-based group signatures via “almost free” encryption and other
optimizations. In: Proc. of the 27th Int’l Conf. on the Theory and Application of Cryptology and Information Security. Singapore:
Springer, 2021. 218–248. [doi: 10.1007/978-3-030-92068-5_8]
[18] Libert B, Ling S, Nguyen K, Wang HX. Zero-knowledge arguments for lattice-based PRFs and applications to e-cash. In: Proc. of the
23rd Int’l Conf. on the Theory and Applications of Cryptology and Information Security. Hong Kong: Springer, 2017. 304–335. [doi: 10.
1007/978-3-319-70700-6_11]
[19] Regev O. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM), 2009, 56(6): 34. [doi: 10.
1145/1568318.1568324]
[20] Banerjee A, Peikert C, Rosen A. Pseudorandom functions and lattices. In: Proc. of the 31st Annual Int’l Conf. on the Theory and
Applications of Cryptographic Techniques. Cambridge: Springer, 2012. 719–737. [doi: 10.1007/978-3-642-29011-4_42]
[21] Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions. In: Proc. of the 40th Annual
ACM Symp. on Theory of Computing. Victoria British: ACM, 2008. 197–206. [doi: 10.1145/1374376.1374407]
[22] Blömer J, Bobolz J, Porzenheim L. A generic construction of an anonymous reputation system and instantiations from lattices. In: Proc.
of the 29th Int’l Conf. on the Theory and Application of Cryptology and Information Security. Guangzhou: Springer, 2023. 418–452.
[doi: 10.1007/978-981-99-8724-5_13]
[23] Gorbunov S, Vaikuntanathan V, Wichs D. Leveled fully homomorphic signatures from standard lattices. In: Proc. of the 47th Annual
ACM Symp. on Theory of Computing. Portland: ACM, 2015. 469–477. [doi: 10.1145/2746539.2746576]
[24] Goldwasser S, Micali S, Rackoff C. The knowledge complexity of interactive proof-systems. In: Providing Sound Foundations for
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali. ACM, 2019. 203–225. [doi: 10.1145/3335741.3335750]
[25] Ling S, Nguyen K, Stehlé D, Wang HX. Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Proc.
of the 16th Int’l Conf. on Practice and Theory in Public-key Cryptography. Nara: Springer, 2013. 107–124. [doi: 10.1007/978-3-642-
36362-7_8]
[26] Fouque PA, Hoffstein J, Kirchner P, et al. Falcon: Fast-Fourier lattice-based compact signatures over NTRU. 2019. https://api.
semanticscholar.org/CorpusID:231637439
[27] Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schwabe P, Seiler G, Stehlé D. CRYSTALS-dilithium: A lattice-based digital signature
scheme. IACR Trans. on Cryptographic Hardware and Embedded Systems, 2018, 2018(1): 238–268.
[28] Albrecht MR, Player R, Scott S. On the concrete hardness of learning with errors. Journal of Mathematical Cryptology, 2015, 9(3):
169–203. [doi: 10.1515/jmc-2015-0016]
[29] Ishai Y, Su H, Wu DJ. Shorter and faster post-quantum designated-verifier zkSNARKs from lattices. In: Proc. of the 2021 ACM SIGSAC
Conf. on Computer and Communications Security. ACM, 2021. 212–234. [doi: 10.1145/3460120.3484572]
[30] Huang XJ, Song JS, Li ZC. Dynamic group signature scheme on lattice with verifier-local revocation. Cryptology ePrint Archive,
2022/022, 2022.

