Page 62 - 《软件学报》2025年第10期
P. 62

陈颖 等: 具有用户自主链接及验证者条件撤销的格基群签名                                                    4459


                  [9]   Peikert  C,  Shiehian  S.  Noninteractive  zero  knowledge  for  NP  from  (plain)  learning  with  errors.  In:  Proc.  of  the 39th  Annual  Int’l
                     Cryptology Conf. on Advances in Cryptology. Santa Barbara: Springer, 2019. 89–114. [doi: 10.1007/978-3-030-26948-7_4]
                 [10]   Boneh  D,  Shacham  H.  Group  signatures  with  verifier-local  revocation.  In:  Proc.  of  the  11th  ACM  Conf.  on  Computer  and
                     Communications Security. Washington: ACM, 2004. 168–177. [doi: 10.1145/1030083.1030106]
                 [11]   Diaz J, Lehmann A. Group signatures with user-controlled and sequential linkability. In: Proc. of the 24th IACR Int’l Conf. on Practice
                     and Theory of Public Key Cryptography. Springer, 2021. 360–388. [doi: 10.1007/978-3-030-75245-3_14]
                 [12]   Langlois A, Ling S, Nguyen K, Wang HX. Lattice-based group signature scheme with verifier-local revocation. In: Proc. of the 17th Int’l
                     Conf. on Public-key Cryptography. Buenos Aires: Springer, 2014. 345–361. [doi: 10.1007/978-3-642-54631-0_20]
                 [13]   Fiore D, Garms L, Kolonelos D, Soriente C, Tucker I. Ring signatures with user-controlled linkability. In: Proc. of the 27th European
                     Symp. on Research in Computer Security. Copenhagen: Springer, 2022. 405–426. [doi: 10.1007/978-3-031-17146-8_20]
                 [14]   Bellare M, Poettering B, Stebila D. Deterring certificate subversion: Efficient double-authentication-preventing signatures. In: Proc. of the
                     2017 Int’l Conf. on Practice and Theory of Public-key Cryptography. Amsterdam: Springer, 2017. 121–151. [doi: 10.1007/978-3-662-
                     54388-7_5]
                 [15]   Ling S, Nguyen K, Wang HX, Xu YH. Lattice-based group signatures: Achieving full dynamicity with ease. In: Proc. of the 15th Int’l
                     Conf. on Applied Cryptography and Network Security. Kanazawa: Springer, 2017. 293–312. [doi: 10.1007/978-3-319-61204-1_15]
                 [16]   Esgin MF, Steinfeld R, Liu DX, Ruj S. Efficient hybrid exact/relaxed lattice proofs and applications to rounding and VRFs. In: Proc. of
                     the 43rd Annual Int’l Cryptology Conf. on Advances in Cryptology. Santa Barbara: Springer, 2023. 484–517. [doi: 10.1007/978-3-031-
                     38554-4_16]
                 [17]   Lyubashevsky  V,  Nguyen  NK,  Plançon  M,  Seiler  G.  Shorter  lattice-based  group  signatures  via  “almost  free”  encryption  and  other
                     optimizations.  In:  Proc.  of  the 27th  Int’l  Conf.  on  the  Theory  and  Application  of  Cryptology  and  Information  Security.  Singapore:
                     Springer, 2021. 218–248. [doi: 10.1007/978-3-030-92068-5_8]
                 [18]   Libert B, Ling S, Nguyen K, Wang HX. Zero-knowledge arguments for lattice-based PRFs and applications to e-cash. In: Proc. of the
                     23rd Int’l Conf. on the Theory and Applications of Cryptology and Information Security. Hong Kong: Springer, 2017. 304–335. [doi: 10.
                     1007/978-3-319-70700-6_11]
                 [19]   Regev O. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM), 2009, 56(6): 34. [doi: 10.
                     1145/1568318.1568324]
                 [20]   Banerjee  A,  Peikert  C,  Rosen  A.  Pseudorandom  functions  and  lattices.  In:  Proc.  of  the  31st  Annual  Int’l  Conf.  on  the  Theory  and
                     Applications of Cryptographic Techniques. Cambridge: Springer, 2012. 719–737. [doi: 10.1007/978-3-642-29011-4_42]
                 [21]   Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions. In: Proc. of the 40th Annual
                     ACM Symp. on Theory of Computing. Victoria British: ACM, 2008. 197–206. [doi: 10.1145/1374376.1374407]
                 [22]   Blömer J, Bobolz J, Porzenheim L. A generic construction of an anonymous reputation system and instantiations from lattices. In: Proc.
                     of the 29th Int’l Conf. on the Theory and Application of Cryptology and Information Security. Guangzhou: Springer, 2023. 418–452.
                     [doi: 10.1007/978-981-99-8724-5_13]
                 [23]   Gorbunov S, Vaikuntanathan V, Wichs D. Leveled fully homomorphic signatures from standard lattices. In: Proc. of the 47th Annual
                     ACM Symp. on Theory of Computing. Portland: ACM, 2015. 469–477. [doi: 10.1145/2746539.2746576]
                 [24]   Goldwasser  S,  Micali  S,  Rackoff  C.  The  knowledge  complexity  of  interactive  proof-systems.  In:  Providing  Sound  Foundations  for
                     Cryptography: On the Work of Shafi Goldwasser and Silvio Micali. ACM, 2019. 203–225. [doi: 10.1145/3335741.3335750]
                 [25]   Ling S, Nguyen K, Stehlé D, Wang HX. Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Proc.
                     of the 16th Int’l Conf. on Practice and Theory in Public-key Cryptography. Nara: Springer, 2013. 107–124. [doi: 10.1007/978-3-642-
                     36362-7_8]
                 [26]   Fouque  PA,  Hoffstein  J,  Kirchner  P,  et  al.  Falcon:  Fast-Fourier  lattice-based  compact  signatures  over  NTRU.  2019.  https://api.
                     semanticscholar.org/CorpusID:231637439
                 [27]   Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schwabe P, Seiler G, Stehlé D. CRYSTALS-dilithium: A lattice-based digital signature
                     scheme. IACR Trans. on Cryptographic Hardware and Embedded Systems, 2018, 2018(1): 238–268.
                 [28]   Albrecht  MR,  Player  R,  Scott  S.  On  the  concrete  hardness  of  learning  with  errors.  Journal  of  Mathematical  Cryptology,  2015,  9(3):
                     169–203. [doi: 10.1515/jmc-2015-0016]
                 [29]   Ishai Y, Su H, Wu DJ. Shorter and faster post-quantum designated-verifier zkSNARKs from lattices. In: Proc. of the 2021 ACM SIGSAC
                     Conf. on Computer and Communications Security. ACM, 2021. 212–234. [doi: 10.1145/3460120.3484572]
                 [30]   Huang  XJ,  Song  JS,  Li  ZC.  Dynamic  group  signature  scheme  on  lattice  with  verifier-local  revocation.  Cryptology  ePrint  Archive,
                     2022/022, 2022.
   57   58   59   60   61   62   63   64   65   66   67