Page 191 - 《软件学报》2025年第10期
P. 191

4588                                                      软件学报  2025  年第  36  卷第  10  期


                 [62]   Fan YQ, Cao XY, Xu J, Xu SH, Yang HJ. High-frequency keywords to predict defects for Android applications. In: Proc. of the 42nd
                     IEEE Annual Computer Software and Applications Conf. (COMPSAC). Tokyo: IEEE, 2018. 442–447. [doi: 10.1109/COMPSAC.2018.
                     10273]
                 [63]   Cheng T, Zhao KS, Sun S, Mateen M, Wen JH. Effort-aware cross-project just-in-time defect prediction framework for mobile APPs.
                     Frontiers of Computer Science, 2022, 16(6): 166207. [doi: 10.1007/s11704-021-1013-5]
                 [64]   Hu XY, Chen X, Xia HL, Gu YF. Interpretable method of just-in-time defect prediction model for mobile APP. Application Research of
                     Computers, 2022, 39(7): 2104–2108 (in Chinese with English abstract). [doi: 10.19734/j.issn.1001-3695.2021.12.0679]
                 [65]   McIntosh S, Kamei Y. Are fix-inducing changes a moving target? A longitudinal case study of just-in-time defect prediction. In: Proc. of
                     the 40th IEEE/ACM Int’l Conf. on Software Engineering. Gothenburg: IEEE, 2018. 560. [doi: 10.1145/3180155.3182514]
                 [66]   Hassan AE. Predicting faults using the complexity of code changes. In: Proc. of the 31st IEEE Int’l Conf. on Software Engineering.
                     Vancouver: IEEE, 2009. 78–88. [doi: 10.1109/ICSE.2009.5070510]
                 [67]   Moser R, Pedrycz W, Succi G. A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction.
                     In: Proc. of the 30th Int’l Conf. on Software Engineering (ICSE). Leipzig: ACM, 2008. 181–190. [doi: 10.1145/1368088.1368114]
                 [68]   Guo PJ, Zimmermann T, Nagappan N, Murphy B. Characterizing and predicting which bugs get fixed: An empirical study of Microsoft
                     Windows. In: Proc. of the 32nd ACM/IEEE Int’l Conf. on Software Engineering (ICSE). Cape Town: ACM, 2010. 495–504. [doi: 10.
                     1145/1806799.1806871]
                 [69]   Purushothaman R, Perry DE. Toward understanding the rhetoric of small source code changes. IEEE Trans. on Software Engineering,
                     2005, 31(6): 511–526. [doi: 10.1109/TSE.2005.74]
                 [70]   Matsumoto S, Kamei Y, Monden A, Matsumoto KI, Nakamura M. An analysis of developer metrics for fault prediction. In: Proc. of the
                     6th Int’l Conf. on Predictive Models in Software Engineering. Timişoara: ACM, 2010. 18. [doi: 10.1145/1868328.1868356]
                 [71]   Spadini  D,  Aniche  M,  Bacchelli  A.  PyDriller:  Python  framework  for  mining  software  repositories.  In:  Proc.  of  the  26th  ACM  Joint
                     Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Lake Buena Vista: ACM,
                     2018. 908–911. [doi: 10.1145/3236024.3264598]
                 [72]   Tantithamthavorn C, Hassan AE. An experience report on defect modelling in practice: Pitfalls and challenges. In: Proc. of the 40th Int’l
                     Conf. on Software Engineering: Software Engineering in Practice. Gothenburg: ACM, 2018. 286–295. [doi: 10.1145/3183519.3183547]
                 [73]   Jiarpakdee J, Tantithamthavorn C, Treude C. AutoSpearman: Automatically mitigating correlated software metrics for interpreting defect
                     models. In Proc. of the 2018 IEEE Int’l Conf. on Software Maintenance and Evolution (ICSME). Madrid: IEEE, 2018. 92–103. [doi: 10.
                     1109/ICSME.2018.00018]
                 [74]   Tan M, Tan L, Dara S, Mayeux C. Online defect prediction for imbalanced data. In: Proc. of the 37th IEEE/ACM IEEE Int’l Conf. on
                     Software Engineering. Florence: IEEE, 2015. 99–108. [doi: 10.1109/ICSE.2015.139]
                 [75]   Liaw A, Wiener M. Classification and regression by randomForest. R News, 2002, 2(3): 18–22.
                 [76]   Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and
                     System Sciences, 1997, 55(1): 119–139. [doi: 10.1006/jcss.1997.1504]
                 [77]   Liu XT, Guo ZQ, Liu SR, Zhang P, Lu HM, Zhou YM. Comparing software defect prediction models: Research problem, progress, and
                     challenges. Ruan Jian Xue Bao/Journal of Software, 2023, 34(2): 582–624 (in Chinese with English abstract). http://www.jos.org.cn/1000-
                     9825/6714.htm [doi: 10.13328/j.cnki.jos.006714]
                 [78]   Li ZQ, Jing XY, Zhu XK, Zhang HY, Xu BW, Ying S. On the multiple sources and privacy preservation issues for heterogeneous defect
                     prediction. IEEE Trans. on Software Engineering, 2019, 45(4): 391–411. [doi: 10.1109/TSE.2017.2780222]
                 [79]   Tantithamthavorn  C,  McIntosh  S,  Hassan  AE,  Matsumoto  K.  An  empirical  comparison  of  model  validation  techniques  for  defect
                     prediction models. IEEE Trans. on Software Engineering, 2017, 43(1): 1–18. [doi: 10.1109/TSE.2016.2584050]
                 [80]   Li ZQ, Jing XY, Zhu XK, Zhang HY, Xu BW, Ying S. Heterogeneous defect prediction with two-stage ensemble learning. Automated
                     Software Engineering, 2019, 26(3): 599–651. [doi: 10.1007/s10515-019-00259-1]
                 [81]   Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Proc. of the 31st Int’l Conf. on Neural Information
                     Processing Systems. Long Beach: Curran Associates Inc., 2017. 4768–4777.
                 [82]   Chawla  NV,  Bowyer  KW,  Hall  LO,  Kegelmeyer  WP.  SMOTE:  Synthetic  minority  over-sampling  technique.  Journal  of  Artificial
                     Intelligence Research, 2002, 16: 321–357. [doi: 10.1613/jair.953]
                 [83]   Lunardon N, Menardi G, Torelli N. ROSE: A package for binary imbalanced learning. The R Journal, 2014, 6(1): 79–89. [doi: 10.32614/
                     RJ-2014-008]
                 [84]   Rosa G, Pascarella L, Scalabrino S, Tufano R, Bavota G, Lanza M, Oliveto R. Evaluating SZZ implementations through a developer-
                     informed oracle. In: Proc. of the 43rd IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Madrid: IEEE, 2021. 436–447. [doi: 10.
                     1109/ICSE43902.2021.00049]
   186   187   188   189   190   191   192   193   194   195   196