Page 190 - 《软件学报》2025年第10期
P. 190

李志强 等: SZZ  误标变更对移动      APP  即时缺陷预测性能和解释的影响                                    4587


                     Technology, 2020, 126: 106364. [doi: 10.1016/j.infsof.2020.106364]
                 [40]   Yan M, Xia X, Fan YR, Lo D, Hassan AE, Zhang XD. Effort-aware just-in-time defect identification in practice: A case study at Alibaba.
                     In:  Proc.  of  the  28th  ACM  Joint  Meeting  on  European  Software  Engineering  Conf.  and  Symp.  on  the  Foundations  of  Software
                     Engineering. ACM, 2020. 1308–1319. [doi: 10.1145/3368089.3417048]
                 [41]   Ni C, Xia X, Lo D, Yang XH, Hassan AE. Just-in-time defect prediction on JavaScript projects: A replication study. ACM Trans. on
                     Software Engineering and Methodology (TOSEM), 2022, 31(4): 76. [doi: 10.1145/3508479]
                 [42]   Xu Z, Zhao KS, Zhang T, Fu CL, Yan M, Xie ZW, Zhang XH, Catolino G. Effort-aware just-in-time bug prediction for mobile APPs via
                     cross-triplet deep feature embedding. IEEE Trans. on Reliability, 2022, 71(1): 204–220. [doi: 10.1109/TR.2021.3066170]
                 [43]   Zhao KS, Xu Z, Zhang TZ, Tang YT, Yan M. Simplified deep forest model based just-in-time defect prediction for Android mobile
                     APPs. IEEE Trans. on Reliability, 2021, 70(2): 848–859. [doi: 10.1109/TR.2021.3060937]
                 [44]   Zhao KS, Xu Z, Yan M, Xue L, Li W, Catolino G. A compositional model for effort-aware just-in-time defect prediction on Android
                     APPs. IET Software, 2022, 16(3): 259–278. [doi: 10.1049/sfw2.12040]
                 [45]   Yang XL, Lo D, Xia X, Zhang Y, Sun JL. Deep learning for just-in-time defect prediction. In: Proc. of the 2015 IEEE Int’l Conf. on
                     Software Quality, Reliability and Security. Vancouver: IEEE, 2015. 17–26. [doi: 10.1109/QRS.2015.14]
                 [46]   Hoang T, Dam HK, Kamei Y, Lo D, Ubayashi N. DeepJIT: An end-to-end deep learning framework for just-in-time defect prediction. In:
                     Proc. of the 2019 IEEE/ACM 16th Int’l Conf. on Mining Software Repositories (MSR). Montreal: IEEE, 2019. 34–45. [doi: 10.1109/
                     MSR.2019.00016]
                 [47]   Hoang T, Kang HJ, Lo D, Lawall J. CC2Vec: Distributed representations of code changes. In: Proc. of the 42nd ACM/IEEE Int’l Conf.
                     on Software Engineering. Seoul: ACM, 2020. 518–529. [doi: 10.1145/3377811.3380361]
                 [48]   Zeng ZR, Zhang YQ, Zhang HT, Zhang LM. Deep just-in-time defect prediction: How far are we? In: Proc. of the 30th ACM SIGSOFT
                     Int’l Symp. on Software Testing and Analysis. ACM, 2021. 427–438. [doi: 10.1145/3460319.3464819]
                 [49]   Pornprasit C, Tantithamthavorn CK. JITLine: A simpler, better, faster, finer-grained just-in-time defect prediction. In: Proc. of the 18th
                     IEEE/ACM Int’l Conf. on Mining Software Repositories (MSR). Madrid: IEEE, 2021. 369–379. [doi: 10.1109/MSR52588.2021.00049]
                 [50]   Pornprasit C, Tantithamthavorn C, Jiarpakdee J, Fu M, Thongtanunam P. PyExplainer: Explaining the predictions of just-in-time defect
                     models. In: Proc. of the 36th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). Melbourne: IEEE, 2021. 407–418. [doi:
                     10.1109/ASE51524.2021.9678763]
                 [51]   Lin DY, Tantithamthavorn C, Hassan AE. The impact of data merging on the interpretation of cross-project just-in-time defect models.
                     IEEE Trans. on Software Engineering, 2022, 48(8): 2969–2986. [doi: 10.1109/TSE.2021.3073920]
                 [52]   Zheng W, Shen TR, Chen X. Just-in-time defect prediction technology based on interpretability technology. In: Proc. of the 8th Int’l
                     Conf. on Dependable Systems and Their Applications (DSA). Yinchuan: IEEE, 2021. 78–89. [doi: 10.1109/DSA52907.2021.00017]
                 [53]   Chen LQ, Wang C, Song SL. Just-in-time software defect prediction model and its interpretability research. Journal of Chinese Computer
                     Systems, 2022, 43(4): 865–871 (in Chinese with English abstract). [doi: 10.20009/j.cnki.21-1106/TP.2020-1075]
                 [54]   Yang XG, Yu HQ, Fan GS, Huang ZJ, Yang K, Zhou ZY. An empirical study of model-agnostic interpretation technique for just-in-time
                     software defect prediction. In: Proc. of the 17th EAI Int’l Conf. on Collaborative Computing: Networking, Applications and Worksharing.
                     Springer, 2021. 420–438. [doi: 10.1007/978-3-030-92635-9_25]
                 [55]   Pascarella L, Palomba F, Bacchelli A. Fine-grained just-in-time defect prediction. Journal of Systems and Software, 2019, 150: 22–36.
                     [doi: 10.1016/j.jss.2018.12.001]
                 [56]   Cabral  GG,  Minku  LL,  Shihab  E,  Mujahid  S.  Class  imbalance  evolution  and  verification  latency  in  just-in-time  software  defect
                     prediction. In Proc. of the 41st IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Montreal: IEEE, 2019. 666–676. [doi: 10.1109/
                     ICSE.2019.00076]
                 [57]   Zhao YH, Damevski K, Chen H. A systematic survey of just-in-time software defect prediction. ACM Computing Surveys, 2023, 55(10):
                     201. [doi: 10.1145/3567550]
                 [58]   Scandariato  R,  Walden  J.  Predicting  vulnerable  classes  in  an  Android  application.  In:  Proc.  of  the  4th  Int’l  Workshop  on  Security
                     Measurements and Metrics. Lund: ACM, 2012. 11–16. [doi: 10.1145/2372225.2372231]
                 [59]   Kaur A, Kaur K, Kaur H. Application of machine learning on process metrics for defect prediction in mobile application. In: Proc. of the
                     3rd  Int’l  Conf.  on  Information  Systems  Design  and  Intelligent  Applications.  Springer,  2016.  81–98.  [doi:  10.1007/978-81-322-2755-
                     7_10]
                 [60]   Malhotra  R.  An  empirical  framework  for  defect  prediction  using  machine  learning  techniques  with  Android  software.  Applied  Soft
                     Computing, 2016, 49: 1034–1050. [doi: 10.1016/j.asoc.2016.04.032]
                 [61]   Ricky MY, Purnomo F, Yulianto B. Mobile application software defect prediction. In: Proc. of the 2016 IEEE Symp. on Service-oriented
                     System Engineering (SOSE). Oxford: IEEE, 2016. 307–313. [doi: 10.1109/SOSE.2016.25]
   185   186   187   188   189   190   191   192   193   194   195