Page 108 - 《软件学报》2025年第10期
P. 108

张川 等: 抗量子的高效区块链认证存储方案                                                           4505


                     algorithm. Science, 2016, 351(6277): 1068–1070. [doi: 10.1126/science.aad9480]
                  [9]   Willsch D, Willsch M, Jin FP, De Raedt H, Michielsen K. Large-scale simulation of Shor’s quantum factoring algorithm. Mathematics,
                     2023, 11(19): 4222. [doi: 10.3390/math11194222]
                 [10]   Grover  LK.  A  fast  quantum  mechanical  algorithm  for  database  search.  In:  Proc.  of  the  28th  Annual  ACM  Symp.  on  Theory  of
                     Computing. Philadelphia: ACM, 1996. 212–219. [doi: 10.1145/237814.237866]
                 [11]   Gao F, Hu RZ, Yin LF, Cao HB, Yu J, Shuang F. Quantum grover search-inspired global maximum power point tracking for photovoltaic
                     systems  under  partial  shading  conditions.  IEEE  Trans.  on  Sustainable  Energy,  2024,  15(3):  1601–1613.  [doi:  10.1109/TSTE.2024.
                     3361483]
                 [12]   Hasanova H, Baek UJ, Shin MG, Cho K, Kim MS. A survey on blockchain cybersecurity vulnerabilities and possible countermeasures.
                     Int’l Journal of Network Management, 2019, 29(2): e2060. [doi: 10.1002/NEM.2060]
                 [13]   Faridi  A,  Siddiqui  F.  Improving  SPV-based  cryptocurrency  wallet.  In:  Proc.  of  the  2019  Int’l  Conf.  of  Cybernetics,  Cognition  and
                     Machine Learning Applications. Singapore: Springer, 2020. 127–137. [doi: 10.1007/978-981-15-1632-0_14]
                 [14]   Zhao YL, Niu BN, Li P, Fan X. A novel enhanced lightweight node for blockchain. In: Proc. of the 1st Int’l Conf. on Blockchain and
                     Trustworthy Systems. Guangzhou: Springer, 2020. 137–149. [doi: 10.1007/978-981-15-2777-7_12]
                 [15]   Zhang C, Xu C, Hu HB, Xu JL. COLE: A column-based learned storage for blockchain systems. In: Proc. of the 22nd USENIX Conf. on
                     File and Storage Technologies. Santa Clara: USENIX Association, 2024. 329–345.
                 [16]   Pillai  SEVS,  Polimetla  K.  Analyzing  the  impact  of  quantum  cryptography  on  network  security.  In:  Proc.  of  the  2024  Int’l  Conf.  on
                     Integrated Circuits and Communication Systems. Raichur: IEEE, 2024. 1–6. [doi: 10.1109/ICICACS60521.2024.10498417]
                 [17]   Truger F, Barzen J, Bechtold M, Beisel M, Leymann F, Mandl A, Yussupov V. Warm-starting and quantum computing: A systematic
                     mapping study. ACM Computing Surveys, 2024, 56(9): 229. [doi: 10.1145/3652510]
                 [18]   Hülsing A, Butin D, Gazdag S, Rijneveld J, Mohaisen A. XMSS: extended Merkle signature scheme. Internet Research Task Force. 2018.
                     [doi: 10.17487/RFC8391]
                 [19]   McGrew D, Curcio M, Fluhrer S. RFC 8554: Leighton-micali hash-based signatures. 2019. [doi: 10.17487/RFC8554]
                 [20]   Bernstein DJ, Hülsing A, Kölbl S, Niederhagen R, Rijneveld J, Schwabe P. The SPHINCS+ signature framework. In: Proc. of the 2019
                     ACM SIGSAC Conf. on Computer and Communications Security. London: ACM, 2019. 2129–2146. [doi: 10.1145/3319535.3363229]
                 [21]   Zhang KY, Cui HR, Yu Y. SPHINCS-α: A compact stateless hash-based signature scheme. Cryptology ePrint Archive, 2022.
                 [22]   Karniavoura F, Magoutis K. Decision-making approaches for performance QoS in distributed storage systems: A survey. IEEE Trans. on
                     Parallel and Distributed Systems, 2019, 30(8): 1906–1919. [doi: 10.1109/TPDS.2019.2893940]
                 [23]   Cai ZH, Lin JY, Liu F. Blockchain storage: Technologies and challenges. Chinese Journal of Network and Information Security, 2020,
                     6(5): 11–20 (in Chinese with English abstract). [doi: 10.11959/j.issn.2096-109x.2020019]
                 [24]   de  Ocáriz  Borde  HS.  An  overview  of  trees  in  blockchain  technology:  Merkle  trees  and  Merkle  patricia  tries.  2022.  https://www.
                     researchgate.net/publication/358740207
                 [25]   Raju P, Ponnapalli S, Kaminsky E, Oved G, Keener Z, Chidambaram V, Abraham I. mLSM: Making authenticated storage faster in
                     ethereum. In: Proc. of the 10th USENIX Conf. on Hot Topics in Storage and File Systems. Boston: USENIX Association, 2018.
                 [26]   Choi JA, Beillahi SM, Li PL, Veneris A, Long F. LMPTs: Eliminating storage bottlenecks for processing blockchain transactions. In:
                     Proc.  of  the  2022  IEEE  Int’l  Conf.  on  Blockchain  and  Cryptocurrency.  Shanghai:  IEEE,  2022.  1–9.  [doi:  10.1109/ICBC54727.2022.
                     9805484]
                 [27]   Ponnapalli  S,  Shah  A,  Banerjee  S,  Malkhi  D,  Tai  A,  Chidambaram  V,  Wei  M.  RainBlock:  Faster  transaction  processing  in  public
                     blockchains. In: Proc. of the 2021 USENIX Annual Technical Conf. USENIX Association, 2021. 333–347.
                 [28]   Han YL, Li CX, Li PL, Wu M, Zhou D, Long F. Shrec: Bandwidth-efficient transaction relay in high-throughput blockchain systems. In:
                     Proc. of the 11th ACM Symp. on Cloud Computing. ACM, 2020. 238–252. [doi: 10.1145/3419111.3421283]
                 [29]   Bernstein DJ, Hopwood D, Hülsing A, Lange T, Niederhagen R, Papachristodoulou L, Schneider M, Schwabe P, Wilcox-O’Hearn Z.
                     SPHINCS:  Practical  stateless  hash-based  signatures.  In:  Proc.  of  the  34th  Annual  Int’l  Conf.  on  the  Theory  and  Applications  of
                     Cryptographic Techniques. Sofia: Springer, 2015. 368–397. [doi: 10.1007/978-3-662-46800-5_15]
                 [30]   Jean-Philippe A, Daniel JB, Warb B, et al. SPHINCS+Submission to the NIST post-quantum project, v.3. 2020. https://di-mgt.com.au/
                     pqc-08-sphincs-example.html
                 [31]   Facebook Database Engineering Team. RocksDB: A persistent key-value store for flash and RAM storage. 2022.
   103   104   105   106   107   108   109   110   111   112   113