Page 108 - 《软件学报》2025年第10期
P. 108
张川 等: 抗量子的高效区块链认证存储方案 4505
algorithm. Science, 2016, 351(6277): 1068–1070. [doi: 10.1126/science.aad9480]
[9] Willsch D, Willsch M, Jin FP, De Raedt H, Michielsen K. Large-scale simulation of Shor’s quantum factoring algorithm. Mathematics,
2023, 11(19): 4222. [doi: 10.3390/math11194222]
[10] Grover LK. A fast quantum mechanical algorithm for database search. In: Proc. of the 28th Annual ACM Symp. on Theory of
Computing. Philadelphia: ACM, 1996. 212–219. [doi: 10.1145/237814.237866]
[11] Gao F, Hu RZ, Yin LF, Cao HB, Yu J, Shuang F. Quantum grover search-inspired global maximum power point tracking for photovoltaic
systems under partial shading conditions. IEEE Trans. on Sustainable Energy, 2024, 15(3): 1601–1613. [doi: 10.1109/TSTE.2024.
3361483]
[12] Hasanova H, Baek UJ, Shin MG, Cho K, Kim MS. A survey on blockchain cybersecurity vulnerabilities and possible countermeasures.
Int’l Journal of Network Management, 2019, 29(2): e2060. [doi: 10.1002/NEM.2060]
[13] Faridi A, Siddiqui F. Improving SPV-based cryptocurrency wallet. In: Proc. of the 2019 Int’l Conf. of Cybernetics, Cognition and
Machine Learning Applications. Singapore: Springer, 2020. 127–137. [doi: 10.1007/978-981-15-1632-0_14]
[14] Zhao YL, Niu BN, Li P, Fan X. A novel enhanced lightweight node for blockchain. In: Proc. of the 1st Int’l Conf. on Blockchain and
Trustworthy Systems. Guangzhou: Springer, 2020. 137–149. [doi: 10.1007/978-981-15-2777-7_12]
[15] Zhang C, Xu C, Hu HB, Xu JL. COLE: A column-based learned storage for blockchain systems. In: Proc. of the 22nd USENIX Conf. on
File and Storage Technologies. Santa Clara: USENIX Association, 2024. 329–345.
[16] Pillai SEVS, Polimetla K. Analyzing the impact of quantum cryptography on network security. In: Proc. of the 2024 Int’l Conf. on
Integrated Circuits and Communication Systems. Raichur: IEEE, 2024. 1–6. [doi: 10.1109/ICICACS60521.2024.10498417]
[17] Truger F, Barzen J, Bechtold M, Beisel M, Leymann F, Mandl A, Yussupov V. Warm-starting and quantum computing: A systematic
mapping study. ACM Computing Surveys, 2024, 56(9): 229. [doi: 10.1145/3652510]
[18] Hülsing A, Butin D, Gazdag S, Rijneveld J, Mohaisen A. XMSS: extended Merkle signature scheme. Internet Research Task Force. 2018.
[doi: 10.17487/RFC8391]
[19] McGrew D, Curcio M, Fluhrer S. RFC 8554: Leighton-micali hash-based signatures. 2019. [doi: 10.17487/RFC8554]
[20] Bernstein DJ, Hülsing A, Kölbl S, Niederhagen R, Rijneveld J, Schwabe P. The SPHINCS+ signature framework. In: Proc. of the 2019
ACM SIGSAC Conf. on Computer and Communications Security. London: ACM, 2019. 2129–2146. [doi: 10.1145/3319535.3363229]
[21] Zhang KY, Cui HR, Yu Y. SPHINCS-α: A compact stateless hash-based signature scheme. Cryptology ePrint Archive, 2022.
[22] Karniavoura F, Magoutis K. Decision-making approaches for performance QoS in distributed storage systems: A survey. IEEE Trans. on
Parallel and Distributed Systems, 2019, 30(8): 1906–1919. [doi: 10.1109/TPDS.2019.2893940]
[23] Cai ZH, Lin JY, Liu F. Blockchain storage: Technologies and challenges. Chinese Journal of Network and Information Security, 2020,
6(5): 11–20 (in Chinese with English abstract). [doi: 10.11959/j.issn.2096-109x.2020019]
[24] de Ocáriz Borde HS. An overview of trees in blockchain technology: Merkle trees and Merkle patricia tries. 2022. https://www.
researchgate.net/publication/358740207
[25] Raju P, Ponnapalli S, Kaminsky E, Oved G, Keener Z, Chidambaram V, Abraham I. mLSM: Making authenticated storage faster in
ethereum. In: Proc. of the 10th USENIX Conf. on Hot Topics in Storage and File Systems. Boston: USENIX Association, 2018.
[26] Choi JA, Beillahi SM, Li PL, Veneris A, Long F. LMPTs: Eliminating storage bottlenecks for processing blockchain transactions. In:
Proc. of the 2022 IEEE Int’l Conf. on Blockchain and Cryptocurrency. Shanghai: IEEE, 2022. 1–9. [doi: 10.1109/ICBC54727.2022.
9805484]
[27] Ponnapalli S, Shah A, Banerjee S, Malkhi D, Tai A, Chidambaram V, Wei M. RainBlock: Faster transaction processing in public
blockchains. In: Proc. of the 2021 USENIX Annual Technical Conf. USENIX Association, 2021. 333–347.
[28] Han YL, Li CX, Li PL, Wu M, Zhou D, Long F. Shrec: Bandwidth-efficient transaction relay in high-throughput blockchain systems. In:
Proc. of the 11th ACM Symp. on Cloud Computing. ACM, 2020. 238–252. [doi: 10.1145/3419111.3421283]
[29] Bernstein DJ, Hopwood D, Hülsing A, Lange T, Niederhagen R, Papachristodoulou L, Schneider M, Schwabe P, Wilcox-O’Hearn Z.
SPHINCS: Practical stateless hash-based signatures. In: Proc. of the 34th Annual Int’l Conf. on the Theory and Applications of
Cryptographic Techniques. Sofia: Springer, 2015. 368–397. [doi: 10.1007/978-3-662-46800-5_15]
[30] Jean-Philippe A, Daniel JB, Warb B, et al. SPHINCS+Submission to the NIST post-quantum project, v.3. 2020. https://di-mgt.com.au/
pqc-08-sphincs-example.html
[31] Facebook Database Engineering Team. RocksDB: A persistent key-value store for flash and RAM storage. 2022.

