Page 339 - 《软件学报》2025年第9期
P. 339

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2025,36(9):4250−4270 [doi: 10.13328/j.cnki.jos.007266] [CSTR: 32375.14.jos.007266]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                      *
                 云边联邦学习系统下抗投毒攻击的防御方法

                 赵亚茹  1,2 ,    张建标  1,2 ,    曹益皓  1,2 ,    黄浩翔  1,2


                 1
                  (北京工业大学 计算机学院, 北京 100124)
                 2
                  (可信计算北京市重点实验室 (北京工业大学), 北京 100124)
                 通信作者: 张建标, E-mail: zjb@bjut.edu.cn

                 摘 要: 随着海量数据的涌现和智能应用需求的日益增长, 保障数据安全成为提高数据质量、实现数据价值的重
                 要举措. 其中, 云边端架构是高效处理和优化数据的新兴技术, 联邦学习                    (federated learning, FL) 作为一个高效的去
                 中心化的机器学习范式, 能够为数据提供隐私保护, 近年来引起了学术界及工业界的广泛关注. 然而, 联邦学习展
                 示出了固有的脆弱性使其易于遭受投毒攻击. 现有绝大多数抵抗投毒攻击的防御方法依赖于连续更新空间, 但在
                 实际场景中面向灵活的攻击方式和攻击场景可能是欠鲁棒的. 鉴于此, 提出一种面向云边联邦学习系统                                   (cloud-
                 edge FL, CEFL) 抵抗投毒攻击的防御方法       FedDiscrete. 其关键思想是在客户端利用网络模型边的分数计算本地排
                 名, 实现离散更新空间的创建. 进一步地, 为了兼顾参与                FL  任务的客户端之间的公平性, 引入贡献度指标, 这样,
                 FedDiscrete 能够通过分配更新后的全局排名对可能的攻击者实施惩罚. 广泛的实验结果表明所提方法在抵抗投毒
                 攻击方面表现出显著的优势和鲁棒性, 且适用于独立同分布                    (IID) 和非独立同分布     (non-IID) 场景, 能够为  CEFL
                 系统提供保护.
                 关键词: 联邦学习; 投毒攻击; 防御策略; 离散更新空间; 云边端架构
                 中图法分类号: TP309

                 中文引用格式: 赵亚茹, 张建标, 曹益皓, 黄浩翔. 云边联邦学习系统下抗投毒攻击的防御方法. 软件学报, 2025, 36(9): 4250–4270.
                 http://www.jos.org.cn/1000-9825/7266.htm
                 英文引用格式: Zhao  YR,  Zhang  JB,  Cao  YH,  Huang  HX.  Defense  Method  Against  Poisoning  Attacks  in  Cloud-edge  Federated
                 Learning Systems. Ruan Jian Xue Bao/Journal of Software, 2025, 36(9): 4250–4270 (in Chinese).  http://www.jos.org.cn/1000-9825/
                 7266.htm

                 Defense Method Against Poisoning Attacks in Cloud-edge Federated Learning Systems
                                           1,2
                           1,2
                                                       1,2
                 ZHAO Ya-Ru , ZHANG Jian-Biao , CAO Yi-Hao , HUANG Hao-Xiang 1,2
                 1
                 (College of Computer Science, Beijing University of Technology, Beijing 100124, China)
                 2
                 (Beijing Key Laboratory of Trusted Computing (Beijing University of Technology), Beijing 100124, China)
                 Abstract:  With  the  proliferation  of  massive  data  and  the  ever-growing  demand  for  intelligent  applications,  ensuring  data  security  has
                 become  a  critical  measure  for  enhancing  data  quality  and  realizing  data  value.  The  cloud-edge-client  architecture  has  emerged  as  a
                 promising  technology  for  efficient  data  processing  and  optimization.  Federated  learning  (FL),  an  efficient  decentralized  machine  learning
                 paradigm  that  can  provide  privacy  protection  for  data,  has  garnered  extensive  attention  from  academia  and  industry  in  recent  years.
                 However,  FL  has  demonstrated  inherent  vulnerabilities  that  render  it  highly  susceptible  to  poisoning  attacks.  Most  existing  methods  for
                 defending  against  poisoning  attacks  rely  on  continuously  updated  space,  but  in  practical  scenarios,  those  methods  may  be  less  robust  when
                 facing  flexible  attack  strategies  and  varied  attack  scenarios.  Therefore,  this  study  proposes  FedDiscrete,  a  defense  method  for  resisting
                 poisoning  attacks  in  cloud-edge  FL  (CEFL)  systems.  The  key  idea  is  to  compute  local  rankings  on  the  client  side  using  the  scores  of
                 network  model  edges  to  create  discrete  update  space.  To  ensure  fairness  among  clients  participating  in  the  FL  task,  this  study  also


                 *    基金项目: 北京市自然科学基金  (M21039)
                  收稿时间: 2023-10-09; 修改时间: 2024-05-25, 2024-06-30; 采用时间: 2024-08-02; jos 在线出版时间: 2024-12-11
                  CNKI 网络首发时间: 2024-12-12
   334   335   336   337   338   339   340   341   342   343   344