Page 273 - 《软件学报》2025年第9期
P. 273

4184                                                       软件学报  2025  年第  36  卷第  9  期


                     Information Processing, 2016, 30(3): 125–132 (in Chinese with English abstract).
                 [26]   Wang Y. Research on commonsense knowledge acquisition [Ph.D. Thesis]. Beijing: University of Chinese Academy of Sciences, 2022
                     (in Chinese with English abstract).
                 [27]   Deng P. A study of event graph completion and reasoning based on semantic enhancement [MS. Thesis]. Beijing: Institute of Computer
                     Technology, Chinese Academy of Sciences, 2023 (in Chinese with English abstract).
                 [28]   Meilicke  C,  Fink  M,  Wang  YJ,  Ruffinelli  D,  Gemulla  R,  Stuckenschmidt  H.  Fine-grained  evaluation  of  rule-  and  embedding-based
                     systems for knowledge graph completion. In: Proc. of the 17th Int’l Semantic Web Conf. Monterey: Springer, 2018. 3–20. [doi: 10.1007/
                     978-3-030-00671-6_1]
                 [29]   Li X, Taheri A, Tu LF, Gimpel K. Commonsense knowledge base completion. In: Proc. of the 54th Annual Meeting of the Association
                     for Computational Linguistics. Berlin: ACM, 2016. 1445–1455. [doi: 10.18653/v1/P16-1137]
                 [30]   Malaviya C, Bhagavatula C, Bosselut A, Choi Y. Commonsense knowledge base completion with structural and semantic context. In:
                     Proc. of the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 2925–2933. [doi: 10.1609/aaai.v34i03.5684]
                 [31]   Niu GL, Li B. Logic and commonsense-guided temporal knowledge graph completion. In: Proc. of the 37th AAAI Conf. on Artificial
                     Intelligence. Washington: AAAI, 2023. 4569–4577. [doi: 10.1609/aaai.v37i4.25579]
                 [32]   Wang B, Wang GT, Huang J, You JX, Leskovec J, Jay Kuo CC. Inductive learning on commonsense knowledge graph completion. In:
                     Proc. of the 2021 Int’l Joint Conf. on Neural Networks. Shenzhen: IEEE, 2021. 1–8. [doi: 10.1109/IJCNN52387.2021.9534355]
                 [33]   Bosselut A, Le Bras R, Choi Y. Dynamic neuro-symbolic knowledge graph construction for zero-shot commonsense question answering.
                     In: Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI, 2021. 4923–4931. [doi: 10.1609/aaai.v35i6.16625]
                 [34]   Zhang  NY,  Xie  X,  Chen  X,  Deng  SM,  Ye  HB,  Chen  HJ.  Knowledge  collaborative  fine-tuning  for  low-resource  knowledge  graph
                     completion. Ruan Jian Xue Bao/Journal of Software, 2022, 33(10): 3531–3545 (in Chinese with English abstract). http://www.jos.org.cn/
                     1000-9825/6628.htm [doi: 10.13328/j.cnki.jos.006628]
                 [35]   Zhang YC, Chen Z, Guo LB, Xu YJ, Zhang W, Chen HJ. Making large language models perform better in knowledge graph completion.
                     arXiv:2310.06671, 2023.
                 [36]   Wei YB, Huang QS, Zhang Y, Kwok JT. KICGPT: Large language model with knowledge in context for knowledge graph completion.
                     In: Proc. of the 2024 Findings of the Association for Computational Linguistics. Singapore: ACL, 2024. 8667–8683. [doi: 10.18653/v1/
                     2023.findings-emnlp.580]
                 [37]   Luo RL, Gu TL, Li HL, Li JZ, Lin ZC, Li JY, Yang YJ. Chain of history: Learning and forecasting with LLMs for temporal knowledge
                     graph completion. arXiv:2401.06072, 2024.
                 [38]   Yao L, Peng JZ, Mao CS, Luo Y. Exploring large language models for knowledge graph completion. arXiv:2308.13916, 2023.
                 [39]   Pan SR, Luo LH, Wang YF, Chen C, Wang JP, Wu XD. Unifying large language models and knowledge graphs: A roadmap. IEEE Trans.
                     on Knowledge and Data Engineering, 2024, 36(7): 3580–3599. [doi: 10.1109/TKDE.2024.3352100]
                 [40]   Li DW, Tan Z, Chen TL, Liu H. Contextualization distillation from large language model for knowledge graph completion. In: Proc. of
                     the 2024 Findings of the Association for Computational Linguistics. St. Julian’s: ACL, 2024. 458–477.
                 [41]   OpenAI. GPT-4 technical report. arXiv:2303.08774, 2023.
                 [42]   Liu YH, Ott M, Goyal N, Du JF, Joshi M, Chen DQ, Levy O, Lewis M, Zettlemoyer L, Stoyanov V. RoBERTa: A robustly optimized
                     BERT pretraining approach. arXiv:1907.11692, 2019.
                 [43]   Galárraga LA, Teflioudi C, Hose K, Suchanek F. AMIE: Association rule mining under incomplete evidence in ontological knowledge
                     bases. In: Proc. of the 22nd Int’l Conf. on World Wide Web. Rio de Janeiro: ACM, 2013. 413–422. [doi: 10.1145/2488388.2488425]
                 [44]   Wang Y, Cao CG. Research on categorization of events based on event attributes. Journal of Chinese Information Processing, 2020,
                     34(10): 39–50 (in Chinese with English abstract). [doi: 10.3969/j.issn.1003-0077.2020.10.006]
                 [45]   Song H, Cao CG, Wang Y, Wang S. A fine-grained annotated dataset for Chinese semantic-role labeling. Journal of Chinese Information
                     Processing, 2023, 37(1): 16–32 (in Chinese with English abstract). [doi: 10.3969/j.issn.1003-0077.2023.01.002]
                 [46]   Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3): 273–297. [doi: 10.1007/BF00994018]
                 [47]   OpenAI. Introduction to GPT-4 and GPT-4-Turbo. 2024. https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
                 [48]   Song H, Cao CG, Wang Y, Wang S. Construction of a finely-grained training dataset for Chinese semantic-role labeling. Journal of
                     Chinese Information Processing, 2022, 36(12): 52–66, 73 (in Chinese with English abstract). [doi: 10.3969/j.issn.1003-0077.2022.12.006]
                 [49]   Lu C. Linguistics for Knowledge Engineering. Beijing: Tsinghua University Press, 2010 (in Chinese).
                 [50]   Wang Y. Research on common sense knowledge acquisition methods based on semantic classification [MS. Thesis]. Guilin: Guangxi
                     Normal University, 2015 (in Chinese with English abstract).
                 [51]   Zhu XY. Studies on Semantic Structure Patterns of Sentences in Modern Chinese. Beijing: Peking University Press, 2001 (in Chinese).
   268   269   270   271   272   273   274   275   276   277   278