Page 272 - 《软件学报》2025年第9期
P. 272

黄俏娟 等: 基于大语言模型的事件常识知识图谱扩展方法                                                     4183


                     Ljubljana: ACM, 2021. 2636–2647. [doi: 10.1145/3442381.3449827]
                  [2]   Zellers R, Bisk Y, Farhadi A, Choi Y. From recognition to cognition: Visual commonsense reasoning. In: Proc. of the 2019 IEEE/CVF
                     Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 6713–6724. [doi: 10.1109/CVPR.2019.00688]
                  [3]   Vijayaraghavan P, Roy D. Modeling human motives and emotions from personal narratives using external knowledge and entity tracking.
                     In: Proc. of the 30th Web Conf. Ljubljana: ACM, 2021. 529–540. [doi: 10.1145/3442381.3449997]
                  [4]   Suchanek FM, Kasneci G, Weikum G. YAGO: A core of semantic knowledge. In: Proc. of the 16th Int’l Conf. on World Wide Web.
                     2007. 697–706. [doi: 10.1145/1242572.1242667]
                  [5]   Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z. DBpedia: A nucleus for a Web of open data. In: Proc. of the 6th Int’l
                     Semantic Web Conf., the 2nd Asian Semantic Web Conf. Busan: Springer, 2007. 722–735. [doi: 10.1007/978-3-540-76298-0_52]
                  [6]   Vrandečić D, Krötzsch M. Wikidata: A free collaborative knowledgebase. Communications of the ACM, 2014, 57(10): 78–85. [doi: 10.
                     1145/2629489]
                  [7]   Glavaš G, Šnajder J. Event graphs for information retrieval and multi-document summarization. Expert Systems with Applications, 2014,
                     41(15): 6904–6916. [doi: 10.1016/j.eswa.2014.04.004]
                  [8]   Zhang HM, Liu X, Pan HJ, Song YQ, Leung CWK. ASER: A large-scale eventuality knowledge graph. In: Proc. of the 29th Web Conf.
                     Taipei: ACM, 2020. 201–211. [doi: 10.1145/3366423.3380107]
                  [9]   Ding X, Li Z, Liu T, Liao K. ELG: An event logic graph. arXiv:1907.08015, 2019.
                 [10]   Sap  M,  Le  Bras  R,  Allaway  E,  Bhagavatula  C,  Lourie  N,  Rashkin  H,  Roof  B,  Smith  NA,  Choi  Y.  ATOMIC:  An  atlas  of  machine
                     commonsense for if-then reasoning. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 3027–3035. [doi:
                     10.1609/aaai.v33i01.33013027]
                 [11]   Liu H, Singh P. ConceptNet—A practical commonsense reasoning tool-kit. BT Technology Journal, 2004, 22(4): 211–226. [doi: 10.1023/
                     B:BTTJ.0000047600.45421.6d]
                 [12]   Wang Y, Cao CG, Cao YT, Wang S. A property-based method for acquiring commonsense knowledge. In: Proc. of the 14th Int’l Conf.
                     on KSEM Science, Engineering and Management. Tokyo: Springer, 2021. 53–65. [doi: 10.1007/978-3-030-82136-4_5]
                 [13]   Wang Y, Cao CG, Chen ZW, Wang S. ECCKG: An eventuality-centric commonsense knowledge graph. In: Proc. of the 15th Int’l Conf.
                     on Knowledge Science, Engineering and Management. Singapore: Springer, 2022. 568–584. [doi: 10.1007/978-3-031-10983-6_44]
                 [14]   Song  H.  Research  on  Chinese  semantic  parsing  and  knowledge  acquisition  method  based  on  semantic  roles  [Ph.D.  Thesis].  Beijing:
                     University of Chinese Academy of Sciences, 2022 (in Chinese with English abstract).
                 [15]   Wang  Y,  Cao  CG,  Wang  S.  Commonsense  knowledge  acquisition  via  semantic  roles  in  events.  Journal  of  Chinese  Information
                     Processing, 2023, 37(6): 77–88 (in Chinese with English abstract). [doi: 10.3969/j.issn.1003-0077.2023.06.008]
                 [16]   Lenat DB. CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM, 1995, 38(11): 33–38. [doi: 10.1145/
                     219717.219745]
                 [17]   Fellbaum C, Miller G. WordNet: An Electronic Lexical Database. Cambridge: MIT Press, 1998.
                 [18]   Singh P, Lin T, Mueller ET, Lim G, Perkins T, Zhu WL. Open mind common sense: Knowledge acquisition from the general public. In:
                     Meersman R, Tari Z, eds. On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE: Confederated Int’l Conf.
                     CoopIS, DOA, and ODBASE 2002 Proc. Berlin: Springer, 2002. 1223–1237. [doi: 10.1007/3-540-36124-3_77]
                 [19]   Zhang HM, Khashabi D, Song YQ, Roth D. TransOMCS: From linguistic graphs to commonsense knowledge. In: Proc. of the 29th Int’l
                     Joint Conf. on Artificial Intelligence. Yokohama, 2021. 554.
                 [20]   Romero J, Razniewski S, Pal K, Pan JZ, Sakhadeo A, Weikum G. Commonsense properties from query logs and question answering
                     forums. In: Proc. of the 28th ACM Int’l Conf. on Information and Knowledge Management. Beijing: ACM, 2019. 1411–1420. [doi: 10.
                     1145/3357384.3357955]
                 [21]   Cao  YN.  Research  on  causal  knowledge  acquisition  [Ph.D.  Thesis].  Beijing:  University  of  Chinese  Academy  of  Sciences,  2012  (in
                     Chinese with English abstract).
                 [22]   Bosselut A, Rashkin H, Sap M, Malaviya C, Celikyilmaz A, Choi Y. COMET: Commonsense Transformers for automatic knowledge
                     graph  construction.  In:  Proc.  of  the  57th  Annual  Meeting  of  the  Association  for  Computational  Linguistics.  Florence:  ACL,  2019.
                     4762–4779.
                 [23]   Tandon N, De Melo G, Suchanek F, Weikum G. WebChild: Harvesting and organizing commonsense knowledge from the Web. In: Proc.
                     of the 7th ACM Int’l Conf. on Web Search and Data Mining. New York: ACM, 2014. 523–532. [doi: 10.1145/2556195.2556245]
                 [24]   Chklovski  T.  Learner:  A  system  for  acquiring  commonsense  knowledge  by  analogy.  In:  Proc.  of  the  2nd  Int’l  Conf.  on  Knowledge
                     Capture. Sanibel Island: ACM, 2003. 4–12. [doi: 10.1145/945645.945650]
                 [25]   Cao  C,  Cao  CG,  Zang  LJ,  Wang  S.  An  interactive  method  for  acquiring  event-based  commonsense  knowledge.  Journal  of  Chinese
   267   268   269   270   271   272   273   274   275   276   277