Page 272 - 《软件学报》2025年第9期
P. 272
黄俏娟 等: 基于大语言模型的事件常识知识图谱扩展方法 4183
Ljubljana: ACM, 2021. 2636–2647. [doi: 10.1145/3442381.3449827]
[2] Zellers R, Bisk Y, Farhadi A, Choi Y. From recognition to cognition: Visual commonsense reasoning. In: Proc. of the 2019 IEEE/CVF
Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 6713–6724. [doi: 10.1109/CVPR.2019.00688]
[3] Vijayaraghavan P, Roy D. Modeling human motives and emotions from personal narratives using external knowledge and entity tracking.
In: Proc. of the 30th Web Conf. Ljubljana: ACM, 2021. 529–540. [doi: 10.1145/3442381.3449997]
[4] Suchanek FM, Kasneci G, Weikum G. YAGO: A core of semantic knowledge. In: Proc. of the 16th Int’l Conf. on World Wide Web.
2007. 697–706. [doi: 10.1145/1242572.1242667]
[5] Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z. DBpedia: A nucleus for a Web of open data. In: Proc. of the 6th Int’l
Semantic Web Conf., the 2nd Asian Semantic Web Conf. Busan: Springer, 2007. 722–735. [doi: 10.1007/978-3-540-76298-0_52]
[6] Vrandečić D, Krötzsch M. Wikidata: A free collaborative knowledgebase. Communications of the ACM, 2014, 57(10): 78–85. [doi: 10.
1145/2629489]
[7] Glavaš G, Šnajder J. Event graphs for information retrieval and multi-document summarization. Expert Systems with Applications, 2014,
41(15): 6904–6916. [doi: 10.1016/j.eswa.2014.04.004]
[8] Zhang HM, Liu X, Pan HJ, Song YQ, Leung CWK. ASER: A large-scale eventuality knowledge graph. In: Proc. of the 29th Web Conf.
Taipei: ACM, 2020. 201–211. [doi: 10.1145/3366423.3380107]
[9] Ding X, Li Z, Liu T, Liao K. ELG: An event logic graph. arXiv:1907.08015, 2019.
[10] Sap M, Le Bras R, Allaway E, Bhagavatula C, Lourie N, Rashkin H, Roof B, Smith NA, Choi Y. ATOMIC: An atlas of machine
commonsense for if-then reasoning. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 3027–3035. [doi:
10.1609/aaai.v33i01.33013027]
[11] Liu H, Singh P. ConceptNet—A practical commonsense reasoning tool-kit. BT Technology Journal, 2004, 22(4): 211–226. [doi: 10.1023/
B:BTTJ.0000047600.45421.6d]
[12] Wang Y, Cao CG, Cao YT, Wang S. A property-based method for acquiring commonsense knowledge. In: Proc. of the 14th Int’l Conf.
on KSEM Science, Engineering and Management. Tokyo: Springer, 2021. 53–65. [doi: 10.1007/978-3-030-82136-4_5]
[13] Wang Y, Cao CG, Chen ZW, Wang S. ECCKG: An eventuality-centric commonsense knowledge graph. In: Proc. of the 15th Int’l Conf.
on Knowledge Science, Engineering and Management. Singapore: Springer, 2022. 568–584. [doi: 10.1007/978-3-031-10983-6_44]
[14] Song H. Research on Chinese semantic parsing and knowledge acquisition method based on semantic roles [Ph.D. Thesis]. Beijing:
University of Chinese Academy of Sciences, 2022 (in Chinese with English abstract).
[15] Wang Y, Cao CG, Wang S. Commonsense knowledge acquisition via semantic roles in events. Journal of Chinese Information
Processing, 2023, 37(6): 77–88 (in Chinese with English abstract). [doi: 10.3969/j.issn.1003-0077.2023.06.008]
[16] Lenat DB. CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM, 1995, 38(11): 33–38. [doi: 10.1145/
219717.219745]
[17] Fellbaum C, Miller G. WordNet: An Electronic Lexical Database. Cambridge: MIT Press, 1998.
[18] Singh P, Lin T, Mueller ET, Lim G, Perkins T, Zhu WL. Open mind common sense: Knowledge acquisition from the general public. In:
Meersman R, Tari Z, eds. On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE: Confederated Int’l Conf.
CoopIS, DOA, and ODBASE 2002 Proc. Berlin: Springer, 2002. 1223–1237. [doi: 10.1007/3-540-36124-3_77]
[19] Zhang HM, Khashabi D, Song YQ, Roth D. TransOMCS: From linguistic graphs to commonsense knowledge. In: Proc. of the 29th Int’l
Joint Conf. on Artificial Intelligence. Yokohama, 2021. 554.
[20] Romero J, Razniewski S, Pal K, Pan JZ, Sakhadeo A, Weikum G. Commonsense properties from query logs and question answering
forums. In: Proc. of the 28th ACM Int’l Conf. on Information and Knowledge Management. Beijing: ACM, 2019. 1411–1420. [doi: 10.
1145/3357384.3357955]
[21] Cao YN. Research on causal knowledge acquisition [Ph.D. Thesis]. Beijing: University of Chinese Academy of Sciences, 2012 (in
Chinese with English abstract).
[22] Bosselut A, Rashkin H, Sap M, Malaviya C, Celikyilmaz A, Choi Y. COMET: Commonsense Transformers for automatic knowledge
graph construction. In: Proc. of the 57th Annual Meeting of the Association for Computational Linguistics. Florence: ACL, 2019.
4762–4779.
[23] Tandon N, De Melo G, Suchanek F, Weikum G. WebChild: Harvesting and organizing commonsense knowledge from the Web. In: Proc.
of the 7th ACM Int’l Conf. on Web Search and Data Mining. New York: ACM, 2014. 523–532. [doi: 10.1145/2556195.2556245]
[24] Chklovski T. Learner: A system for acquiring commonsense knowledge by analogy. In: Proc. of the 2nd Int’l Conf. on Knowledge
Capture. Sanibel Island: ACM, 2003. 4–12. [doi: 10.1145/945645.945650]
[25] Cao C, Cao CG, Zang LJ, Wang S. An interactive method for acquiring event-based commonsense knowledge. Journal of Chinese

