Page 99 - 《软件学报》2025年第7期
P. 99

3020                                                       软件学报  2025  年第  36  卷第  7  期


                     open-source software reuse in COTS software. In: Proc. of the 34th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE).
                     San Diego: IEEE, 2019. 1038–1049. [doi: 10.1109/ASE.2019.00100]
                  [8]  Ban G, Xu LL, Xiao Y, Li XH, Yuan ZM, Huo W. B2SMatcher: Fine-grained version identification of open-source software in binary
                     files. Cybersecurity, 2021, 4(1): 21. [doi: 10.1186/s42400-021-00085-7]
                  [9]  Ji YD, Cui L, Huang HH. BugGraph: Differentiating source-binary code similarity with graph triplet-loss network. In: Proc. of the 2021
                     ACM Asia Conf. on Computer and Communications Security. Hong Kong: ACM, 2021. 702–715. [doi: 10.1145/3433210.3437533]
                 [10]  Gui Y, Wan Y, Zhang HY, Huang HF, Sui YL, Xu GD, Shao ZY, Jin H. Cross-language binary-source code matching with intermediate
                     representations. In: Proc. of the 2022 IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). Honolulu: IEEE,
                     2022. 601–612. [doi: 10.1109/SANER53432.2022.00077]
                 [11]  Yu ZP, Zheng WX, Wang JQ, Tang QY, Nie S, Wu S. CodeCMR: Cross-modal retrieval for function-level binary source code matching.
                     In: Proc. of the 34th Int’l Conf. on Neural Information Processing Systems. Vancouver: ACM, 2020. 326.
                 [12]  Jia A, Fan M, Jin WX, Xu X, Zhou ZH, Tang QY, Nie S, Wu S, Liu T. 1-to-1 or 1-to-n? Investigating the effect of function inlining on
                     binary similarity analysis. ACM Trans. on Software Engineering and Methodology, 2023, 32(4): 87. [doi: 10.1145/3561385]
                 [13]  Theodoridis T, Grosser T, Su ZD. Understanding and exploiting optimal function inlining. In: Proc. of the 27th ACM Int’l Conf. on
                     Architectural Support for Programming Languages and Operating Systems. Lausanne: ACM, 2022. 977–989. [doi: 10.1145/3503222.
                     3507744]
                 [14]  Damásio  T,  Pacheco  V,  Goes  F,  Pereira  F,  Rocha  R.  Inlining  for  code  size  reduction.  In:  Proc.  of  the  25th  Brazilian  Symp.  on
                     Programming Languages. Joinville: ACM, 2021. 17–24. [doi: 10.1145/3475061.3475081]
                 [15]  Gupta  P,  Jha  A,  Gupta  B,  Sumpi  K,  Sahoo  S,  Chalapathi  MMV.  Techniques  and  trade-offs  in  function  inlining  optimization.  EAI
                     Endorsed Trans. on Scalable Information Systems, 2024, 11(4): 1–7. [doi: 10.4108/eetsis.4453]
                 [16]  Weingarten ME, Theodoridis T, Prokopec A. Inlining-benefit prediction with interprocedural partial escape analysis. In: Proc. of the 14th
                     ACM  SIGPLAN  Int’l  Workshop  on  Virtual  Machines  and  Intermediate  Languages.  Auckland:  ACM,  2022.  13–24.  [doi:  10.1145/
                     3563838.3567677]
                 [17]  Ben-Asher Y, Faour N, Shinaar O. Mutual inlining: An inlining algorithm to reduce the executable size. In: Proc. of the 2022 CS & IT
                     Conf. 2022. 1–16. [doi: 10.5121/csit.2022.120601]
                 [18]  Muts K, Falk H. Multi-criteria function inlining for hard real-time systems. In: Proc. of the 28th Int’l Conf. on Real-time Networks and
                     Systems. Paris: ACM, 2020. 56–66. [doi: 10.1145/3394810.3394819]
                 [19]  Romano A, Wang WH. When function inlining meets WebAssembly: Counterintuitive impacts on runtime performance. In: Proc. of the
                     31st ACM Joint European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. San Francisco: ACM,
                     2023. 350–362. [doi: 10.1145/3611643.3616311]
                 [20]  Chandramohan M, Xue YX, Xu ZZ, Liu Y, Cho CY, Tan HBK. BinGo: Cross-architecture cross-os binary search. In: Proc. of the 24th
                     ACM SIGSOFT Int’l Symp. on Foundations of Software Engineering. Seattle: ACM, 2016. 678–689. [doi: 10.1145/2950290.2950350]
                 [21]  Ding SHH, Fung BCM, Charland P. Asm2Vec: Boosting static representation robustness for binary clone search against code obfuscation
                     and compiler optimization. In: Proc. of the 2019 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2019. 472–489. [doi: 10.
                     1109/SP.2019.00003]
                 [22]  Kim D, Kim E, Cha SK, Son S, Kim Y. Revisiting binary code similarity analysis using interpretable feature engineering and lessons
                     learned. IEEE Trans. on Software Engineering, 2023, 49(4): 1661–1682. [doi: 10.1109/TSE.2022.3187689]
                 [23]  Moyano JM, Gibaja EL, Cios KJ, Ventura S. Review of ensembles of multi-label classifiers: Models, experimental study and prospects.
                     Information Fusion, 2018, 44: 33–45. [doi: 10.1016/j.inffus.2017.12.001]
                 [24]  Bogatinovski J, Todorovski L, Džeroski S, Kocev D. Comprehensive comparative study of multi-label classification methods. Expert
                     Systems with Applications, 2022, 203: 117215. [doi: 10.1016/j.eswa.2022.117215]
                 [25]  Kocev D, Vens C, Struyf J, Džeroski S. Tree ensembles for predicting structured outputs. Pattern Recognition, 2013, 46(3): 817–833.
                     [doi: 10.1016/j.patcog.2012.09.023]
                 [26]  Tsoumakas G, Katakis I. Multi-label classification: An overview. Int’l Journal of Data Warehousing and Mining, 2007, 3(3): 1–13. [doi:
                     10.4018/jdwm.2007070101]
                 [27]  Read J. Scalable multi-label classification [Ph.D. Thesis]. Hamilton: University of Waikato, 2010.
                 [28]  Schapire  RE,  Singer  Y.  Improved  boosting  algorithms  using  confidence-rated  predictions.  In:  Proc.  of  the  11th  Annual  Conf.  on
                     Computational Learning Theory. Madison: ACM, 1998. 80–91. [doi: 10.1145/279943.279960]
                 [29]  Kenner A, Kästner C, Haase S, Leich T. TypeChef: Toward type checking #ifdef variability in C. In: Proc. of the 2nd Workshop on
                     Feature-oriented Software Development. Eindhoven: ACM, 2010. 25–32. [doi: 10.1145/1868688.1868693]
   94   95   96   97   98   99   100   101   102   103   104