Page 99 - 《软件学报》2025年第7期
P. 99
3020 软件学报 2025 年第 36 卷第 7 期
open-source software reuse in COTS software. In: Proc. of the 34th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE).
San Diego: IEEE, 2019. 1038–1049. [doi: 10.1109/ASE.2019.00100]
[8] Ban G, Xu LL, Xiao Y, Li XH, Yuan ZM, Huo W. B2SMatcher: Fine-grained version identification of open-source software in binary
files. Cybersecurity, 2021, 4(1): 21. [doi: 10.1186/s42400-021-00085-7]
[9] Ji YD, Cui L, Huang HH. BugGraph: Differentiating source-binary code similarity with graph triplet-loss network. In: Proc. of the 2021
ACM Asia Conf. on Computer and Communications Security. Hong Kong: ACM, 2021. 702–715. [doi: 10.1145/3433210.3437533]
[10] Gui Y, Wan Y, Zhang HY, Huang HF, Sui YL, Xu GD, Shao ZY, Jin H. Cross-language binary-source code matching with intermediate
representations. In: Proc. of the 2022 IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). Honolulu: IEEE,
2022. 601–612. [doi: 10.1109/SANER53432.2022.00077]
[11] Yu ZP, Zheng WX, Wang JQ, Tang QY, Nie S, Wu S. CodeCMR: Cross-modal retrieval for function-level binary source code matching.
In: Proc. of the 34th Int’l Conf. on Neural Information Processing Systems. Vancouver: ACM, 2020. 326.
[12] Jia A, Fan M, Jin WX, Xu X, Zhou ZH, Tang QY, Nie S, Wu S, Liu T. 1-to-1 or 1-to-n? Investigating the effect of function inlining on
binary similarity analysis. ACM Trans. on Software Engineering and Methodology, 2023, 32(4): 87. [doi: 10.1145/3561385]
[13] Theodoridis T, Grosser T, Su ZD. Understanding and exploiting optimal function inlining. In: Proc. of the 27th ACM Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems. Lausanne: ACM, 2022. 977–989. [doi: 10.1145/3503222.
3507744]
[14] Damásio T, Pacheco V, Goes F, Pereira F, Rocha R. Inlining for code size reduction. In: Proc. of the 25th Brazilian Symp. on
Programming Languages. Joinville: ACM, 2021. 17–24. [doi: 10.1145/3475061.3475081]
[15] Gupta P, Jha A, Gupta B, Sumpi K, Sahoo S, Chalapathi MMV. Techniques and trade-offs in function inlining optimization. EAI
Endorsed Trans. on Scalable Information Systems, 2024, 11(4): 1–7. [doi: 10.4108/eetsis.4453]
[16] Weingarten ME, Theodoridis T, Prokopec A. Inlining-benefit prediction with interprocedural partial escape analysis. In: Proc. of the 14th
ACM SIGPLAN Int’l Workshop on Virtual Machines and Intermediate Languages. Auckland: ACM, 2022. 13–24. [doi: 10.1145/
3563838.3567677]
[17] Ben-Asher Y, Faour N, Shinaar O. Mutual inlining: An inlining algorithm to reduce the executable size. In: Proc. of the 2022 CS & IT
Conf. 2022. 1–16. [doi: 10.5121/csit.2022.120601]
[18] Muts K, Falk H. Multi-criteria function inlining for hard real-time systems. In: Proc. of the 28th Int’l Conf. on Real-time Networks and
Systems. Paris: ACM, 2020. 56–66. [doi: 10.1145/3394810.3394819]
[19] Romano A, Wang WH. When function inlining meets WebAssembly: Counterintuitive impacts on runtime performance. In: Proc. of the
31st ACM Joint European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. San Francisco: ACM,
2023. 350–362. [doi: 10.1145/3611643.3616311]
[20] Chandramohan M, Xue YX, Xu ZZ, Liu Y, Cho CY, Tan HBK. BinGo: Cross-architecture cross-os binary search. In: Proc. of the 24th
ACM SIGSOFT Int’l Symp. on Foundations of Software Engineering. Seattle: ACM, 2016. 678–689. [doi: 10.1145/2950290.2950350]
[21] Ding SHH, Fung BCM, Charland P. Asm2Vec: Boosting static representation robustness for binary clone search against code obfuscation
and compiler optimization. In: Proc. of the 2019 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2019. 472–489. [doi: 10.
1109/SP.2019.00003]
[22] Kim D, Kim E, Cha SK, Son S, Kim Y. Revisiting binary code similarity analysis using interpretable feature engineering and lessons
learned. IEEE Trans. on Software Engineering, 2023, 49(4): 1661–1682. [doi: 10.1109/TSE.2022.3187689]
[23] Moyano JM, Gibaja EL, Cios KJ, Ventura S. Review of ensembles of multi-label classifiers: Models, experimental study and prospects.
Information Fusion, 2018, 44: 33–45. [doi: 10.1016/j.inffus.2017.12.001]
[24] Bogatinovski J, Todorovski L, Džeroski S, Kocev D. Comprehensive comparative study of multi-label classification methods. Expert
Systems with Applications, 2022, 203: 117215. [doi: 10.1016/j.eswa.2022.117215]
[25] Kocev D, Vens C, Struyf J, Džeroski S. Tree ensembles for predicting structured outputs. Pattern Recognition, 2013, 46(3): 817–833.
[doi: 10.1016/j.patcog.2012.09.023]
[26] Tsoumakas G, Katakis I. Multi-label classification: An overview. Int’l Journal of Data Warehousing and Mining, 2007, 3(3): 1–13. [doi:
10.4018/jdwm.2007070101]
[27] Read J. Scalable multi-label classification [Ph.D. Thesis]. Hamilton: University of Waikato, 2010.
[28] Schapire RE, Singer Y. Improved boosting algorithms using confidence-rated predictions. In: Proc. of the 11th Annual Conf. on
Computational Learning Theory. Madison: ACM, 1998. 80–91. [doi: 10.1145/279943.279960]
[29] Kenner A, Kästner C, Haase S, Leich T. TypeChef: Toward type checking #ifdef variability in C. In: Proc. of the 2nd Workshop on
Feature-oriented Software Development. Eindhoven: ACM, 2010. 25–32. [doi: 10.1145/1868688.1868693]

