Page 398 - 《软件学报》2025年第7期
P. 398

殷新春 等: 支持高效数据所有权共享的动态云存储审计方案                                                    3319


                 算开销较小的乘法计算, 有效地降低了数据审计过程中的计算开销. 通过结合属性基加密和变色龙哈希函数, 本文
                 方案还实现了细粒度数据访问控制、密态数据审计、高效的数据所有权共享以及动态数据修改功能. 安全性分析
                 表明, 本文方案可以保证数据审计的安全性以及数据的机密性. 同时, 在计算开销方面, 本文方案与其他方案相比
                 占有一定优势.

                 References:
                  [1]  Han J, Li YP, Yu Y, Ding Y. Cloud auditing scheme with dynamic revocation of users and real-time updates of data. Ruan Jian Xue
                     Bao/Journal of Software, 2020, 31(2): 578–596 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5633.htm [doi: 10.
                     13328/j.cnki.jos.005633]
                  [2]  Ning JT, Huang XY, Susilo W, Liang KT, Liu XM, Zhang YH. Dual access control for cloud-based data storage and sharing. IEEE
                     Trans. on Dependable and Secure Computing, 2022, 19(2): 1036–1048. [doi: 10.1109/TDSC.2020.3011525]
                  [3]  Su  Y,  Li  YP,  Yang  B,  Ding  Y.  Decentralized  self-auditing  scheme  with  errors  localization  for  multi-cloud  storage.  IEEE  Trans.  on
                     Dependable and Secure Computing, 2022, 19(4): 2838–2850. [doi: 10.1109/TDSC.2021.3075984]
                  [4]  Ning  JT,  Huang  XY,  Wei  LF,  Ma  JH,  Rong  J.  Tracing  malicious  insider  in  attribute-based  cloud  data  sharing.  Chinese  Journal  of
                     Computers, 2022, 45(7): 1431–1445 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2022.01431]
                  [5]  Shang T, Zhang F, Chen XY, Liu JW, Lu XX. Identity-based dynamic data auditing for big data storage. IEEE Trans. on Big Data, 2021,
                     7(6): 913–921. [doi: 10.1109/TBDATA.2019.2941882]
                  [6]  Li X, Liu SP, Lu RX, Zhang XS. On security of an identity-based dynamic data auditing protocol for big data storage. IEEE Trans. on Big
                     Data, 2021, 7(6): 975–977. [doi: 10.1109/TBDATA.2020.3026318]
                  [7]  Duan HY, Du YF, Zheng LQ, Wang C, Au MH, Wang Q. Towards practical auditing of dynamic data in decentralized storage. IEEE
                     Trans. on Dependable and Secure Computing, 2023, 20(1): 708–723. [doi: 10.1109/TDSC.2022.3142611]
                  [8]  Wang HQ, Liu Z, He DB, Li JG. Identity-based provable data possession scheme for multi-source IoT terminal data in public cloud.
                     Journal on Communications, 2021, 42(7): 52–60 (in Chinese with English abstract). [doi: 10.11959/j.issn.1000-436x.2021077]
                  [9]  Fu  Y,  Li  QD,  Zhang  ZH,  Gao  TG.  Data  integrity  verification  scheme  for  privacy  protection  and  fair  payment.  Journal  of  Computer
                     Research and Development, 2022, 59(6): 1343–1355 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.20210023]
                 [10]  Ning JT, Xu J, Liang KT, Zhang F, Chang EC. Passive attacks against searchable encryption. IEEE Trans. on Information Forensics and
                     Security, 2019, 14(3): 789–802. [doi: 10.1109/TIFS.2018.2866321]
                 [11]  Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z, Song D. Provable data possession at untrusted stores. In: Proc. of the
                     14th ACM Conf. on Computer and Communications Security. Alexandria: ACM, 2007. 598–609. [doi: 10.1145/1315245.1315318]
                 [12]  Juels A, Kaliski Jr BS. Pors: Proofs of retrievability for large files. In: Proc. of the 14th ACM Conf. on Computer and Communications
                     Security. Alexandria: ACM, 2007. 584–597. [doi: 10.1145/1315245.1315317]
                 [13]  Ateniese G, Di Pietro R, Mancini LV, Tsudik G. Scalable and efficient provable data possession. In: Proc. of the 4th Int’l Conf. on
                     Security and Privacy in Communication Netowrks. Istanbul: ACM, 2008. 9. [doi: 10.1145/1460877.1460889]
                 [14]  Wang Q, Wang C, Ren K, Lou WJ, Li J. Enabling public auditability and data dynamics for storage security in cloud computing. IEEE
                     Trans. on Parallel and Distributed Systems, 2011, 22(5): 847–859. [doi: 10.1109/TPDS.2010.183]
                 [15]  Rao L, Zhang H, Tu TF. Dynamic outsourced auditing services for cloud storage based on batch-leaves-authenticated Merkle hash tree.
                     IEEE Trans. on Services Computing, 2020, 13(3): 451–463. [doi: 10.1109/TSC.2017.2708116]
                 [16]  Tian H, Chen YX, Chang CC, Jiang H, Huang YF, Chen YH, Liu J. Dynamic-hash-table based public auditing for secure cloud storage.
                     IEEE Trans. on Services Computing, 2017, 10(5): 701–714. [doi: 10.1109/TSC.2015.2512589]
                 [17]  Yang K, Jia XH. An efficient and secure dynamic auditing protocol for data storage in cloud computing. IEEE Trans. on Parallel and
                     Distributed Systems, 2013, 24(9): 1717–1726. [doi: 10.1109/TPDS.2012.278]
                 [18]  Zhang Y, Yu J, Hao R, Wang C, Ren K. Enabling efficient user revocation in identity-based cloud storage auditing for shared big data.
                     IEEE Trans. on Dependable and Secure Computing, 2020, 17(3): 608–619. [doi: 10.1109/TDSC.2018.2829880]
                 [19]  Su  Y,  Sun  JM,  Qin  J,  Hu  JK.  Publicly  verifiable  shared  dynamic  electronic  health  record  databases  with  functional  commitment
                     supporting privacy-preserving integrity auditing. IEEE Trans. on Cloud Computing, 2022, 10(3): 2050–2065. [doi: 10.1109/TCC.2020.
                     3002553]
                 [20]  Yuan YL, Zhang JB, Xu WS, Li Z. Identity-based group user data integrity verification scheme. Ruan Jian Xue Bao/Journal of Software,
                     2022,  33(12):  4758–4770  (in  Chinese  with  English  abstract).  http://www.jos.org.cn/1000-9825/6360.htm  [doi:  10.13328/j.cnki.jos.
                     006360]
   393   394   395   396   397   398   399   400   401   402   403