Page 211 - 《软件学报》2025年第7期
P. 211

3132                                                       软件学报  2025  年第  36  卷第  7  期


                 [34]  Orso A, Rothermel G. Software testing: A research travelogue (2000–2014). In: Future of Software Engineering Proc. Hyderabad: ACM,
                     2014. 117–132. [doi: 10.1145/2593882.2593885]
                 [35]  Chen TY, Kuo FC, Liu H, Poon PL, Towey D, Tse TH, Zhou ZQ. Metamorphic testing: A review of challenges and opportunities. ACM
                     Computing Surveys (CSUR), 2018, 51(1): 4. [doi: 10.1145/3143561]
                 [36]  Jia Y, Harman M. An analysis and survey of the development of mutation testing. IEEE Trans. on Software Engineering, 2011, 37(5):
                     649–678. [doi: 10.1109/TSE.2010.62]
                 [37]  Chen  TY,  Merkel  R.  An  upper  bound  on  software  testing  effectiveness.  ACM  Trans.  on  Software  Engineering  and  Methodology
                     (TOSEM), 2008, 17(3): 16. [doi: 10.1145/1363102.1363107]
                 [38]  Chen TY, Leung H, Mak IK. Adaptive random testing. In: Advances in Computer Science—ASIAN 2004. Chiang Mai: Springer, 2005.
                     320–329. [doi: 10.1007/978-3-540-30502-6_23]
                 [39]  Kuo FC, Chen TY, Liu H, Chan WK. Enhancing adaptive random testing in high dimensional input domains. In: Proc. of the 2007 ACM
                     Symp. on Applied Computing. Seoul: ACM, 2007. 1467–1472. [doi: 0.1145/1244002.1244316]
                 [40]  Mao CY, Chen TY, Kuo FC. Out of sight, out of mind: A distance-aware forgetting strategy for adaptive random testing. Science China
                     Information Sciences, 2017, 60(9): 092106. [doi: 10.1007/s11432-016-0087-0]
                 [41]  Cai KY, Chen TY, Li YC, Ning WY, Yu YT. Adaptive testing of software components. In: Proc. of the 2005 ACM Symp. on Applied
                     Computing. Santa Fe: ACM, 2005. 1463–1469. [doi: 10.1145/1066677.1067011]
                 [42]  Sun CA, Dai HP, Wang G, Towey D, Chen TY, Cai KY. Dynamic random testing of web services: A methodology and evaluation. IEEE
                     Trans. on Services Computing, 2022, 15(2): 736–751. [doi: 10.1109/TSC.2019.2960496]
                 [43]  Arcaini P, Zhang XY, Ishikawa F. Less is more: Simplification of test scenarios for autonomous driving system testing. In: Proc. of the
                     2022 IEEE Conf. on Software Testing, Verification and Validation (ICST). Valencia: IEEE, 2022. 279–290. [doi: 10.1109/ICST53961.
                     2022.00037]
                 [44]  Luo YX, Zhang XY, Arcaini P, Jin Z, Zhao HY, Ishikawa F, Wu RX, Xie T. Targeting requirements violations of autonomous driving
                     systems  by  dynamic  evolutionary  search.  In:  Proc.  of  the  36th  IEEE/ACM  Int’l  Conf.  on  Automated  Software  Engineering  (ASE).
                     Melbourne: IEEE, 2021. 279–291. [doi: 10.1109/ASE51524.2021.9678883]
                 [45]  Gambi A, Nguyen V, Ahmed J, Fraser G. Generating critical driving scenarios from accident sketches. In: Proc. of the 2022 IEEE Int’l
                     Conf. on Artificial Intelligence Testing (AITest). Newark: IEEE, 2022. 95–102. [doi: 10.1109/AITest55621.2022.00022]
                 [46]  Zhu Y, Xu ZG, Zhao XM, Wang RM, Qu XB. TsGAN-based automatic generation algorithm of lane-change cut-in test scenarios on
                     expressways for autonomous vehicles. Journal of South China University of Technology (Natural Science Edition), 2024, 52(8): 76–88
                     (in Chinese with English abstract). [doi: 10.12141/j.issn.1000-565X.230229]
                 [47]  Xia CY, Huang S, Zheng CY, Zhang QR, Wang Y, Wei YH. Modeling and verification method of intersection test scenario for automated
                     driving. Ruan Jian Xue Bao/Journal of Software, 2023, 34(7): 3002–3021 (in Chinese with English abstract). http://www.jos.org.cn/1000-
                     9825/6855.htm [doi: 10.13328/j.cnki.jos.006855]
                 [48]  Liu Y, Zhang XY. Adaptive random testing for multiagent path finding systems. IEEE Trans. on Reliability, 2022, 71(1): 295–308. [doi:
                     10.1109/TR.2022.3146323]
                 [49]  Fan YR, Xia X, Lo D, Hassan AE, Wang Y, Li SP. A differential testing approach for evaluating abstract syntax tree mapping algorithms.
                     In: Proc. of the 43rd IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Madrid: IEEE, 2021. 1174–1185. [doi: 10.1109/ICSE43902.
                     2021.00108]
                 [50]  Zheng YY, Dou WS, Wang YC, Qin Z, Tang L, Gao Y, Wang D, Wang W, Wei J. Finding bugs in gremlin-based graph database systems
                     via randomized differential testing. In: Proc. of the 31st ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Virtual: ACM,
                     2022. 302–313. [doi: 10.1145/3533767.3534409]
                 [51]  Barr  ET,  Harman  M,  McMinn  P,  Shahbaz  M,  Yoo  S.  The  oracle  problem  in  software  testing:  A  survey.  IEEE  Trans.  on  Software
                     Engineering, 2015, 41(5): 507–525. [doi: 10.1109/TSE.2014.2372785]
                 [52]  Laurent T, Arcaini P, Zhang XY, Ishikawa F. Metamorphic testing of an autonomous delivery robots scheduler. In: Proc. of the 2024
                     IEEE Conf. on Software Testing, Verification and Validation (ICST). Toronto: IEEE, 2024. 361–372. [doi: 10.1109/ICST60714.2024.
                     00040]
                 [53]  Feldt R, Poulding S, Clark D, Yoo S. Test set diameter: Quantifying the diversity of sets of test cases. In: Proc. of the 2016 IEEE Int’l
                     Conf. on Software Testing, Verification and Validation (ICST). Chicago: IEEE, 2016. 223–233. [doi: 10.1109/ICST.2016.33]
                 [54]  Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in Software Engineering. 2nd ed., Berlin: Springer,
                     2024. [doi: 10.1007/978-3-662-69306-3]
                 [55]  Liu Y, Zhu XM, Zhang XY, Xiao JN, Yu XH. RGG-PSO+: Random geometric graphs based particle swarm optimization method for
   206   207   208   209   210   211   212   213   214   215   216