Page 118 - 《软件学报》2025年第7期
P. 118

沈庆超 等: 深度学习编译器缺陷实证研究: 现状与演化分析                                                   3039


                 [19]  Garcia J, Feng Y, Shen JJ, Almanee S, Xia Y, Chen QA. A comprehensive study of autonomous vehicle bugs. In: Proc. of the 42nd
                     ACM/IEEE Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 385–396. [doi: 10.1145/3377811.3380397]
                 [20]  Chen  JJ,  Liang  YH,  Shen  QC,  Jiang  JJ,  Li  SC.  Toward  understanding  deep  learning  framework  bugs.  ACM  Trans.  on  Software
                     Engineering and Methodology, 2023, 32(6): 135. [doi: 10.1145/3587155]
                 [21]  Islam  J,  Nguyen  G,  Pan  R,  Rajan  H.  A  comprehensive  study  on  deep  learning  bug  characteristics.  In:  Proc.  of  the  27th  ACM  Joint
                     Meeting  on  European  Software  Engineering  Conf.  and  Symp.  on  the  Foundations  of  Software  Engineering.  Tallinn:  ACM,  2019.
                     510–520. [doi: 10.1145/3338906.3338955]
                 [22]  Zhang YH, Chen YF, Cheung SC, Xiong YF, Zhang L. An empirical study on TensorFlow program bugs. In: Proc. of the 27th ACM
                     SIGSOFT Int’l Symp. on Software Testing and Analysis. Amsterdam: ACM, 2018. 129–140. [doi: 10.1145/3213846.3213866]
                 [23]  Abadi M, Agarwal A, Barham P, et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv:1603.
                     04467, 2016.
                 [24]  Lu S, Park S, Seo E, and Zhou YY. Learning from mistakes: A comprehensive study on real world concurrency bug characteristics. In:
                     Proc. of the 13th Int’l Conf. on Architectural Support for Programming Languages and Operating Systems. Washington: ACM, 2008.
                     329–339. [doi: 10.1145/1346281.1346323]
                 [25]  Di  Franco  A,  Guo  H,  Rubio-González  C.  A  comprehensive  study  of  real-world  numerical  bug  characteristics.  In:  Proc.  of  the  32nd
                     IEEE/ACM Int’l Conf. on Automated Software Engineering. Urbana: IEEE, 2017. 509–519. [doi: 10.1109/ASE.2017.8115662]
                 [26]  Han X, Yu TT. An empirical study on performance bugs for highly configurable software systems. In: Proc. of the 10th ACM/IEEE Int’l
                     Symp. on Empirical Software Engineering and Measurement. Ciudad Real: ACM, 2016. 23. [doi: 10.1145/2961111.2962602]
                 [27]  Wan ZY, Lo D, Xia X, Cai L. Bug characteristics in blockchain systems: A large-scale empirical study. In: Proc. of the 14th IEEE/ACM
                     Int’l Conf. on Mining Software Repositories. Buenos Aires: IEEE, 2017. 413–424. [doi: 10.1109/MSR.2017.59]
                 [28]  Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin ZM, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang
                     E,  DeVito  Z,  Raison  M,  Tejani  A,  Chilamkurthy  S,  Steiner  B,  Fang  L,  Bai  JJ,  Chintala  S.  PyTorch:  An  imperative  style,  high-
                     performance deep learning library. In: Proc. of the 33rd Conf. on Neural Information Processing Systems. Vancouver: ACM, 2019. 32.
                 [29]  Moolayil J. Learn Keras for Deep Neural Networks. Berkeley: Apress, 2019. [doi: 10.1007/978-1-4842-4240-7]
                 [30]  Tong ZH, Du N, Song XB, Wang XL. Study on MindSpore deep learning framework. In: Proc. of the 17th Int’l Conf. on Computational
                     Intelligence and Security. Chengdu: IEEE, 2021. 183–186. [doi: 10.1109/CIS54983.2021.00046]
                 [31]  Li ZM, Tan L, Wang XH, Lu S, Zhou YY, Zhai CX. Have things changed now? An empirical study of bug characteristics in modern open
                     source software. In: Proc. of the 1st Workshop on Architectural and System Support for Improving Software Dependability. San Jose:
                     ACM, 2006. 25–33. [doi: 10.1145/1181309.1181314]
                 [32]  Ma HY, Zhang WQ, Shen QC, Tian YQ, Chen JJ, Cheung SC. Towards understanding the bugs in solidity compiler. In: Proc. of the 33rd
                     ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Vienna: ACM, 2024. 1312–1324. [doi: 10.1145/3650212.3680362]
                 [33]  Nikanjam A, Morovati MM, Khomh F, Ben Braiek H. Faults in deep reinforcement learning programs: A taxonomy and a detection
                     approach. Automated Software Engineering, 2022, 29(1): 8. [doi: 10.1007/s10515-021-00313-x]
                 [34]  Shull F, Godfrey S, Bechtel A, Feldmann RL, Regardie M, Seaman C. Making use of a decade of widely varying historical data: SARP
                     Project—“full life-cycle defect management”. Fraunhofer USA Inc., 2008.
                 [35]  Tan L, Liu C, Li ZM, Wang XH, Zhou YY, Zhai CX. Bug characteristics in open source software. Empirical Software Engineering, 2014,
                     19(6): 1665–1705. [doi: 10.1007/s10664-013-9258-8]
                 [36]  Thung F, Wang SW, Lo D, Jiang LX. An empirical study of bugs in machine learning systems. In: Proc. of the 23rd IEEE Int’l Symp. on
                     Software Reliability Engineering. Dallas: IEEE, 2012. 271–280. [doi: 10.1109/ISSRE.2012.22]
                 [37]  Vieira SM, Kaymak U, Sousa JMC. Cohen’s Kappa coefficient as a performance measure for feature selection. In: Proc. of the 2010 Int’l
                     Conf. on Fuzzy Systems. Barcelona: IEEE, 2010. 1–8. [doi: 10.1109/FUZZY.2010.5584447]
                 [38]  Yang CY, Deng YL, Lu RY, Yao JY, Liu JW, Jabbarvand R, Zhang LM. WhiteFox: White-box compiler fuzzing empowered by large
                     language models. Proc. of the ACM on Programming Languages, 2024, 8(OOPSLA2): 296. [doi: 10.1145/3689736]
                 [39]  Shen QC, Tian YQ, Ma HY, Chen JJ, Huang LL, Fu RF, Cheung SC, Wang Z. A tale of two DL cities: When library tests meet compiler.
                     arXiv:2407.16626, 2024.
                 [40]  Liu JW, Wei YX, Yang S, Deng YL, Zhang LM. Coverage-guided tensor compiler fuzzing with joint IR-pass mutation. Proc. of the ACM
                     on Programming Languages, 2022, 6(OOPSLA1): 73. [doi: 10.1145/3527317]
                 [41]  Liu  JW,  Lin  JK,  Ruffy  F,  Tan  C,  Li  JY,  Panda  A,  Zhang  LM.  NNSmith:  Generating  diverse  and  valid  test  cases  for  deep  learning
                     compilers.  In:  Proc.  of  the  28th  ACM  Int’l  Conf.  on  Architectural  Support  for  Programming  Languages  and  Operating  Systems.
                     Vancouver: ACM, 2023. 530–543. [doi: 10.1145/3575693.3575707]
   113   114   115   116   117   118   119   120   121   122   123