Page 117 - 《软件学报》2025年第7期
P. 117

3038                                                       软件学报  2025  年第  36  卷第  7  期


                 了  8  个  TVM  缺陷, 其中  7  个已被开发人员确认或修复. CfgFuzz 的缺陷检测能力进一步证实了本文研究发现的有
                 效性.

                 References:
                  [1]  Chen CY, Seff A, Kornhauser A, Xiao JX. DeepDriving: Learning affordance for direct perception in autonomous driving. In: Proc. of
                     the 2015 IEEE Int’l Conf. on Computer Vision. Santiago: IEEE, 2015. 2722–2730. [doi: 10.1109/ICCV.2015.312]
                  [2]  Sun Y, Chen YH, Wang XG, Tang XO. Deep learning face representation by joint identification-verification. In: Proc. of the 28th Int’l
                     Conf. on Neural Information Processing Systems. Montreal: MIT Press, 2014. 1988–1996.
                  [3]  Cao KB, Chen CY, Baltes S, Treude C, Chen X. Automated query reformulation for efficient search based on query logs from stack
                     overflow.  In:  Proc.  of  the  43rd  IEEE/ACM  Int’l  Conf.  on  Software  Engineering.  Madrid:  IEEE,  2021.  1273–1285.  [doi:  10.1109/
                     ICSE43902.2021.00116]
                  [4]  Chen X, Chen CY, Zhang D, Xing ZC. SEthesaurus: WordNet in software engineering. IEEE Trans. on Software Engineering, 2021,
                     47(9): 1960–1979. [doi: 10.1109/TSE.2019.2940439]
                  [5]  Watson C, Cooper N, Palacio DN, Moran K, Poshyvanyk D. A systematic literature review on the use of deep learning in software
                     engineering research. ACM Trans. on Software Engineering and Methodology (TOSEM), 2022, 31(2): 32. [doi: 10.1145/3485275]
                  [6]  Yang L, Chen JJ, Wang Z, Wang WJ, Jiang JJ, Dong XY, Zhang WB. Semi-supervised log-based anomaly detection via probabilistic
                     label estimation. In: Proc. of the 43rd IEEE/ACM Int’l Conf. on Software Engineering. Madrid: IEEE, 2021. 1448–1460. [doi: 10.1109/
                     ICSE43902.2021.00130]
                  [7]  Li MZ, Liu Y, Liu XY, Sun QX, You X, Yang HL, Luan ZZ, Gan L, Yang GW, Qian DP. The deep learning compiler: A comprehensive
                     survey. IEEE Trans. on Parallel and Distributed Systems, 2021, 32(3): 708–727. [doi: 10.1109/TPDS.2020.3030548]
                  [8]  Shen QC, Ma HY, Chen JJ, Tian YQ, Chung SC, Chen X. A comprehensive study of deep learning compiler bugs. In: Proc. of the 29th
                     ACM Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Athens: ACM,
                     2021. 968–980. [doi: 10.1145/3468264.3468591]
                  [9]  Chen TQ, Moreau T, Jiang Z, Zheng LM, Yan E, Cowan M, Shen HC, Wang LY, Hu YW, Ceze L, Guestrin C, Krishnamurthy A. TVM:
                     An automated end-to-end optimizing compiler for deep learning. In: Proc. of the 13th USENIX Conf. on Operating Systems Design and
                     Implementation. Carlsbad: USENIX Association, 2018. 579–594.
                 [10]  Rotem N, Fix J, Abdulrasool S, Catron G, Deng S, Dzhabarov R, Gibson N, Hegeman J, Lele M, Levenstein R, Montgomery J, Maher B,
                     Nadathur S, Olesen J, Park J, Rakhov A, Smelyanskiy M, Wang M. Glow: Graph lowering compiler techniques for neural networks.
                     arXiv:1805.00907, 2019.
                 [11]  Cyphers S, Bansal AK, Bhiwandiwalla A, Bobba J, Brookhart M, Chakraborty A, Constable W, Convey C, Cook L, Kanawi O, Kimball
                     R, Knight J, Korovaiko N, Kumar V, Lao YX, Lishka CR, Menon J, Myers J, Narayana SA, Procter A, Webb TJ. Intel nGraph: An
                     intermediate representation, compiler, and executor for deep learning. arXiv:1801.08058, 2018.
                 [12]  Xiao  DW,  Liu  ZB,  Yuan  YY,  Pang  Q,  Wang  S.  Metamorphic  testing  of  deep  learning  compilers.  In:  Proc.  of  the  2022  ACM
                     SIGMETRICS/IFIP PERFORMANCE Joint Int’l Conf. on Measurement and Modeling of Computer Systems. Mumbai: ACM, 2022.
                     65–66. [doi: 10.1145/3489048.3522655]
                 [13]  Ma HY, Shen QC, Tian YQ, Chen JJ, Cheung SC. Fuzzing deep learning compilers with HirGen. In: Proc. of the 32nd ACM SIGSOFT
                     Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 248–260. [doi: 10.1145/3597926.3598053]
                 [14]  Zhao J, Li BJ, Nie W, Geng Z, Zhang RW, Gao X, Cheng B, Wu C, Cheng Y, Li Z, Di P, Zhang K, Jin XF. AKG: Automatic kernel
                     generation  for  neural  processing  units  using  polyhedral  transformations.  In:  Proc.  of  the  42nd  ACM  SIGPLAN  Int’l  Conf.  on
                     Programming Language Design and Implementation. ACM, 2021. 1233–1248. [doi: 10.1145/3453483.3454106]
                 [15]  Andriyanov NA. Analysis of the acceleration of neural networks inference on intel processors based on openVINO toolkit. In: Proc. of the
                     2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications. Svetlogorsk: IEEE, 2020. 1–5. [doi: 10.
                     1109/SYNCHROINFO49631.2020.9166067]
                 [16]  Sun  CN,  Le  V,  Zhang  QR,  Su  ZD.  Toward  understanding  compiler  bugs  in  GCC  and  LLVM.  In:  Proc.  of  the  25th  Int’l  Symp.  on
                     Software Testing and Analysis. Saarbrücken: ACM, 2016. 294–305. [doi: 10.1145/2931037.2931074]
                 [17]  Zhou ZD, Ren ZL, Gao GJ, Jiang H. An empirical study of optimization bugs in GCC and LLVM. Journal of Systems and Software,
                     2021, 174: 110884. [doi: 10.1016/j.jss.2020.110884]
                 [18]  Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P. Taxonomy of real faults in deep learning systems. In: Proc. of
                     the 42nd ACM/IEEE Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 1110–1121. [doi: 10.1145/3377811.3380395]
   112   113   114   115   116   117   118   119   120   121   122