Page 384 - 《软件学报》2025年第5期
P. 384
2284 软件学报 2025 年第 36 卷第 5 期
[19] Li W, Li JY, Gu DW, Wang ML, Cai TP. Statistical fault analysis of the Piccolo lightweight cryptosystem. Chinese Journal of
Computers, 2021, 44(10): 2104–2121 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2021.02104]
[20] Zhao XJ, Guo SZ, Wang T, Zhang F, Liu HY, Huang J, Wang P. Research of algebraic fault analysis on Piccolo. Chinese Journal of
Computers, 2013, 36(4): 882–894 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2013.00882]
[21] Chen H, Wang T, Zhang F, Zhao XJ, He W, Xu LM, Ma YF. Stealthy hardware trojan based algebraic fault analysis of HIGHT block
cipher. Security and Communication Networks, 2017, 2017: 8051728. [doi: 10.1155/2017/8051728]
[22] Le DP, Yeo SL, Khoo K. Algebraic differential fault analysis on SIMON block cipher. IEEE Trans. on Computers, 2019, 68(11):
1561–1572. [doi: 10.1109/TC.2019.2926081]
[23] Li W, Liu C, Gu DW, Gao JN, Sun WQ. Statistical differential fault analysis of the Saturnin lightweight cryptosystem in the mobile
wireless sensor networks. IEEE Trans. on Information Forensics and Security, 2023, 18: 1487–1496. [doi: 10.1109/TIFS.2023.3244083]
[24] Li W, Zhang YX, Gu DW, Zhang JY, Zhu XM, Liu C, Cai TP, Li JY. Ciphertext-only fault analysis on the MANTIS lightweight cipher.
Acta Electonica Sinica, 2022, 50(4): 967–976 (in Chinese with English abstract). [doi: 10.12263/DZXB.20211026]
[25] Bagheri N, Sadeghi S, Ravi P, Bhasin S, Soleimany H. SIPFA: Statistical ineffective persistent faults analysis on Feistel ciphers. IACR
Trans. on Cryptographic Hardware and Embedded Systems, 2022, 2022(3): 367–390. [doi: 10.46586/tches.v2022.i3.367-390]
[26] Baksi A, Bhasin S, Breier J, Khairallah M, Peyrin T, Sarkar S, Sim SM. DEFAULT: Cipher level resistance against differential fault
attack. In: Proc. of the 27th Int’l Conf. on the Theory and Application of Cryptology and Information Security. Singapore: Springer, 2021.
124–156. [doi: 10.1007/978-3-030-92075-3_5]
[27] Dey C, Pandey SK, Roy T, Sarkar S. Differential fault attack on DEFAULT. IACR Cryptology ePrint Archive, 2021. Paper 2021/1392.
[28] Nageler M, Dobraunig C, Eichlseder M. Information-combining differential fault attacks on DEFAULT. In: Proc. of the 41st Annual Int’l
Conf. on the Theory and Applications of Cryptographic Techniques. Trondheim: Springer, 2022. 168–191. [doi: 10.1007/978-3-031-
07082-2_7]
[29] Anderson TW, Darling DA. A test of goodness of fit. Journal of the American Statistical Association, 1954, 49(268): 765–769. [doi: 10.
1080/01621459.1954.10501232]
[30] Jang K, Baksi A, Breier J, Seo H, Chattopadhyay A. Quantum implementation and analysis of DEFAULT. IACR Cryptology ePrint
Archive, 2022. Paper 2022/647.
[31] Courtois NT, Meier W. Algebraic attacks on stream ciphers with linear feedback. In: Proc. of the 2003 Int’l Conf. on the Theory and
Applications of Cryptographic Techniques. Warsaw: Springer, 2003. 345–359. [doi: 10.1007/3-540-39200-9_21]
[32] Courtois NT, Bard GV. Algebraic cryptanalysis of the data encryption standard. In: Proc. of the 11th IMA Int’l Conf. on Cryptography
and Coding. Cirencester: Springer, 2007. 152–169. [doi: 10.1007/978-3-540-77272-9_10]
[33] Courtois NT, O’Neil S, Quisquater JJ. Practical algebraic attacks on the Hitag2 stream cipher. In: Proc. of the 12th Int’l Conf. on
Information Security. Pisa: Springer, 2009. 167–176. [doi: 10.1007/978-3-642-04474-8_14]
[34] Zhang F, Zhao XJ, Guo SZ, Wang T, Shi ZJ. Improved algebraic fault analysis: A case study on Piccolo and applications to other
lightweight block ciphers. In: Proc. of the 4th Int’l Workshop on Constructive Side-channel Analysis and Secure Design. Paris: Springer,
2013. 62–79. [doi: 10.1007/978-3-642-40026-1_5]
[35] Zhao XJ, Guo SJ, Zhang F, Wang T, Shi ZJ, Ma CJ, Gu DW. Algebraic fault analysis on GOST for key recovery and reverse engineering.
In: Proc. of the 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography. Busan: IEEE, 2014. 29–39. [doi: 10.1109/FDTC.
2014.13]
[36] Gruber M, Karl P, Sigl G. Algebraic fault analysis of Subterranean 2.0. In: Proc. of the 2021 Workshop on Fault Detection and Tolerance
in Cryptography. Milan: IEEE, 2021. 45–55. [doi: 10.1109/FDTC53659.2021.00016]
[37] Fang X, Zhang HX, Wang DZ, Yan H, Fan F, Shu L. Algebraic persistent fault analysis of SKINNY_64 based on S_box decomposition.
Entropy, 2022, 24(11): 1508. [doi: 10.3390/e24111508]
[38] Fang X, Zhang HX, Cui XT, Wang YZ, Ding LX. Efficient attack scheme against SKINNY-64 based on algebraic fault analysis. Entropy,
2023, 25(6): 908. [doi: 10.3390/e25060908]
[39] Qiu Z, Zhang F, Feng TX, Gong X. RAFA: Redundancies-assisted algebraic fault analysis and its implementation on SPN block ciphers.
IACR Trans. on Cryptographic Hardware and Embedded Systems, 2023, 2023(3): 570–596. [doi: 10.46586/tches.v2023.i3.570-596]
[40] Nozaki Y, Yoshikawa M. Statistical fault analysis for a lightweight cipher Midori. In: Proc. of the 2017 IEEE Int’l Conf. on Information
and Automation. Macao: IEEE, 2017. 236–241. [doi: 10.1109/ICInfA.2017.8078912]
[41] Ramezanpour K, Ampadu P, Diehl W. A statistical fault analysis methodology for the ASCON authenticated cipher. In: Proc. of the 2019
IEEE Int’l Symp. on Hardware Oriented Security and Trust. McLean: IEEE, 2019. 41–50. [doi: 10.1109/HST.2019.8741029]
[42] Reed I. A class of multiple-error-correcting codes and the decoding scheme. Trans. of the IRE Professional Group on Information Theory,
1954, 4(4): 38–49. [doi: 10.1109/TIT.1954.1057465]