Page 384 - 《软件学报》2025年第5期
P. 384

2284                                                       软件学报  2025  年第  36  卷第  5  期


                 [19]  Li  W,  Li  JY,  Gu  DW,  Wang  ML,  Cai  TP.  Statistical  fault  analysis  of  the  Piccolo  lightweight  cryptosystem.  Chinese  Journal  of
                     Computers, 2021, 44(10): 2104–2121 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2021.02104]
                 [20]  Zhao XJ, Guo SZ, Wang T, Zhang F, Liu HY, Huang J, Wang P. Research of algebraic fault analysis on Piccolo. Chinese Journal of
                     Computers, 2013, 36(4): 882–894 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2013.00882]
                 [21]  Chen H, Wang T, Zhang F, Zhao XJ, He W, Xu LM, Ma YF. Stealthy hardware trojan based algebraic fault analysis of HIGHT block
                     cipher. Security and Communication Networks, 2017, 2017: 8051728. [doi: 10.1155/2017/8051728]
                 [22]  Le  DP,  Yeo  SL,  Khoo  K.  Algebraic  differential  fault  analysis  on  SIMON  block  cipher.  IEEE  Trans.  on  Computers,  2019,  68(11):
                     1561–1572. [doi: 10.1109/TC.2019.2926081]
                 [23]  Li W, Liu C, Gu DW, Gao JN, Sun WQ. Statistical differential fault analysis of the Saturnin lightweight cryptosystem in the mobile
                     wireless sensor networks. IEEE Trans. on Information Forensics and Security, 2023, 18: 1487–1496. [doi: 10.1109/TIFS.2023.3244083]
                 [24]  Li W, Zhang YX, Gu DW, Zhang JY, Zhu XM, Liu C, Cai TP, Li JY. Ciphertext-only fault analysis on the MANTIS lightweight cipher.
                     Acta Electonica Sinica, 2022, 50(4): 967–976 (in Chinese with English abstract). [doi: 10.12263/DZXB.20211026]
                 [25]  Bagheri N, Sadeghi S, Ravi P, Bhasin S, Soleimany H. SIPFA: Statistical ineffective persistent faults analysis on Feistel ciphers. IACR
                     Trans. on Cryptographic Hardware and Embedded Systems, 2022, 2022(3): 367–390. [doi: 10.46586/tches.v2022.i3.367-390]
                 [26]  Baksi A, Bhasin S, Breier J, Khairallah M, Peyrin T, Sarkar S, Sim SM. DEFAULT: Cipher level resistance against differential fault
                     attack. In: Proc. of the 27th Int’l Conf. on the Theory and Application of Cryptology and Information Security. Singapore: Springer, 2021.
                     124–156. [doi: 10.1007/978-3-030-92075-3_5]
                 [27]  Dey C, Pandey SK, Roy T, Sarkar S. Differential fault attack on DEFAULT. IACR Cryptology ePrint Archive, 2021. Paper 2021/1392.
                 [28]  Nageler M, Dobraunig C, Eichlseder M. Information-combining differential fault attacks on DEFAULT. In: Proc. of the 41st Annual Int’l
                     Conf.  on  the  Theory  and  Applications  of  Cryptographic  Techniques.  Trondheim:  Springer,  2022.  168–191.  [doi:  10.1007/978-3-031-
                     07082-2_7]
                 [29]  Anderson TW, Darling DA. A test of goodness of fit. Journal of the American Statistical Association, 1954, 49(268): 765–769. [doi: 10.
                     1080/01621459.1954.10501232]
                 [30]  Jang K, Baksi A, Breier J, Seo H, Chattopadhyay A. Quantum implementation and analysis of DEFAULT. IACR Cryptology ePrint
                     Archive, 2022. Paper 2022/647.
                 [31]  Courtois NT, Meier W. Algebraic attacks on stream ciphers with linear feedback. In: Proc. of the 2003 Int’l Conf. on the Theory and
                     Applications of Cryptographic Techniques. Warsaw: Springer, 2003. 345–359. [doi: 10.1007/3-540-39200-9_21]
                 [32]  Courtois NT, Bard GV. Algebraic cryptanalysis of the data encryption standard. In: Proc. of the 11th IMA Int’l Conf. on Cryptography
                     and Coding. Cirencester: Springer, 2007. 152–169. [doi: 10.1007/978-3-540-77272-9_10]
                 [33]  Courtois  NT,  O’Neil  S,  Quisquater  JJ.  Practical  algebraic  attacks  on  the  Hitag2  stream  cipher.  In:  Proc.  of  the  12th  Int’l  Conf.  on
                     Information Security. Pisa: Springer, 2009. 167–176. [doi: 10.1007/978-3-642-04474-8_14]
                 [34]  Zhang  F,  Zhao  XJ,  Guo  SZ,  Wang  T,  Shi  ZJ.  Improved  algebraic  fault  analysis:  A  case  study  on  Piccolo  and  applications  to  other
                     lightweight block ciphers. In: Proc. of the 4th Int’l Workshop on Constructive Side-channel Analysis and Secure Design. Paris: Springer,
                     2013. 62–79. [doi: 10.1007/978-3-642-40026-1_5]
                 [35]  Zhao XJ, Guo SJ, Zhang F, Wang T, Shi ZJ, Ma CJ, Gu DW. Algebraic fault analysis on GOST for key recovery and reverse engineering.
                     In: Proc. of the 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography. Busan: IEEE, 2014. 29–39. [doi: 10.1109/FDTC.
                     2014.13]
                 [36]  Gruber M, Karl P, Sigl G. Algebraic fault analysis of Subterranean 2.0. In: Proc. of the 2021 Workshop on Fault Detection and Tolerance
                     in Cryptography. Milan: IEEE, 2021. 45–55. [doi: 10.1109/FDTC53659.2021.00016]
                 [37]  Fang X, Zhang HX, Wang DZ, Yan H, Fan F, Shu L. Algebraic persistent fault analysis of SKINNY_64 based on S_box decomposition.
                     Entropy, 2022, 24(11): 1508. [doi: 10.3390/e24111508]
                 [38]  Fang X, Zhang HX, Cui XT, Wang YZ, Ding LX. Efficient attack scheme against SKINNY-64 based on algebraic fault analysis. Entropy,
                     2023, 25(6): 908. [doi: 10.3390/e25060908]
                 [39]  Qiu Z, Zhang F, Feng TX, Gong X. RAFA: Redundancies-assisted algebraic fault analysis and its implementation on SPN block ciphers.
                     IACR Trans. on Cryptographic Hardware and Embedded Systems, 2023, 2023(3): 570–596. [doi: 10.46586/tches.v2023.i3.570-596]
                 [40]  Nozaki Y, Yoshikawa M. Statistical fault analysis for a lightweight cipher Midori. In: Proc. of the 2017 IEEE Int’l Conf. on Information
                     and Automation. Macao: IEEE, 2017. 236–241. [doi: 10.1109/ICInfA.2017.8078912]
                 [41]  Ramezanpour K, Ampadu P, Diehl W. A statistical fault analysis methodology for the ASCON authenticated cipher. In: Proc. of the 2019
                     IEEE Int’l Symp. on Hardware Oriented Security and Trust. McLean: IEEE, 2019. 41–50. [doi: 10.1109/HST.2019.8741029]
                 [42]  Reed I. A class of multiple-error-correcting codes and the decoding scheme. Trans. of the IRE Professional Group on Information Theory,
                     1954, 4(4): 38–49. [doi: 10.1109/TIT.1954.1057465]
   379   380   381   382   383   384   385   386   387   388   389