Page 298 - 《软件学报》2025年第5期
P. 298

2198                                                       软件学报  2025  年第  36  卷第  5  期


                                         表 3 基于乘法密钥拆分的多随机数框架的实例化

                    Alice        Bob                                             −1
                                             k = w 4 +w 1 w 5 +w 2 w 6 +w 3 w 7    s = (1+d)  (k +r)−r  序号

                    w 1 w 2 w 3 w 4    w 5     w 6    w 7


                                 k 3               k 2 +k 1 k 3           d 1 d 2 k 2 +d 1 d 2 k 1 k 3 +(d 1 d 2 −1)r  3.1
                                                                                2
                                d 2 k 3            k 2 +d 2 k 1 k 3       d 1 d 2 k 2 +d 1 d k 1 k 3 +(d 1 d 2 −1)r  3.2
                                                                                2
                               −1                   −1                                                3.3
                                d k 3             k 2 +d k 1 k 3           d 1 d 2 k 2 +d 1 k 1 k 3 +(d 1 d 2 −1)r
                               2                    2
                                                                                   2
                                                                                   2
                             1+d 2 k 3           k 2 +k 1 +d 2 k 1 k 3     d 1 d 2 k 2 +d 1 d 2 k 1 +d 1 d k 1 k 3 +(d 1 d 2 −1)r  3.4
                                   Null Null
                             k 2
                    k 1 NullNull    −1               −1              d 1 d 2 k 2 +d 1 d 2 k 1 +d 1 k 1 k 3 +(d 1 d 2 −1)r  3.5
                             1+d k 3            k 2 +k 1 +d k 1 k 3
                                2                    2
                                                                             2
                                 d 2 +k 3        k 2 +d 2 k 1 +k 1 k 3     d 1 d 2 k 2 +d 1 d k 1 +d 1 d 2 k 1 k 3 +(d 1 d 2 −1)r  3.6
                                                                             2

                             d −1  +k 3           −1                 d 1 d 2 k 2 +d 1 k 1 +d 1 d 2 k 1 k 3 +(d 1 d 2 −1)r  3.7
                                                  2
                              2                 k 2 +d k 1 +k 1 k 3
                                k 2 k 3           k 2 (1+k 1 k 3 )        d 1 d 2 k 2 (1+k 1 k 3 )+(d 1 d 2 −1)r  3.8
                                   Null Null                                                          3.9
                           k 2 k 3    k 3         k 3 (k 1 +k 2 )         d 1 d 2 k 3 (k 1 +k 2 )+(d 1 d 2 −1)r
                                           −2     −2            −1        −1
                 −2
                                   −2
                 d k 1 k 2    k 3    k 4    k 5  d k 6    k 7  d k 1 k 5 +d k 2 k 6 +k 3 k 7 +k 4 d d 2 k 1 k 5 +d 1 d k 2 k 6 +d 1 d 2 k 4 +d 1 d 2 k 3 k 7 +(d 1 d 2 −1)r 3.10

                 1                 2         1    2               1       2
                                           −1     −2                     −1
                 −1                −2                            d 2 k 1 k 5 +d 1 d k 2 k 6 +d 1 d 2 k 4 +d 1 d 2 k 3 k 7 +(d 1 d 2 −1)r  3.11
                 d k 1 k 2    k 3    k 4    k 5  d k 6    k 7  d k 1 k 5 +d k 2 k 6 +k 3 k 7 +k 4  2

                                           1
                                                  2
                 1                 2


                                        表 4 基于签名私钥的多随机数框架签名随机数构造

                     Alice                       Bob
                                                                                              ′
                                                                                ′
                                                                                         ′
                                                                                   ′
                                                                                     ′
                                                                                          ′
                                                                              k = d 1 w +w w +w w +w w ′  序号
                                                                                              3 7
                                                                                4
                                                                                   1 5
                                                                                         2 6
                  w ′  w ′  w ′   w ′         w ′        w ′      w ′
                     1     2     3     4        5          6        7
                                             (1+d)d 2 k 3                       (1+d)d 1 d 2 (k 2 +k 1 k 3 )  3.1.d
                                                2                             (1+d)d 1 d 2 (k 2 +d 2 k 1 k 3 )  3.2.d
                                             (1+d)d k 3
                                                2
                                                                                     (   −1  )
                                             (1+d)k 3                           (1+d)d 1 d 2 k 2 +d k 1 k 3  3.3.d
                                                                                         2
                                             (      )
                                                  2                         (1+d)d 1 d 2 (k 2 +k 1 +d 2 k 1 k 3 )  3.4.d
                                           (1+d) d 2 +d k 3
                                                  2
                                  (1+d)d 2 k 2          Null     Null
                   d 1 k 1 Null Null      (1+d)(d 2 +k 3 )                         (       −1  )     3.5.d
                                                                              (1+d)d 1 d 2 k 2 +k 1 +d k 1 k 3
                                                                                           2
                                             (      )
                                               2                            (1+d)d 1 d 2 (k 2 +d 2 k 1 +k 1 k 3 )  3.6.d
                                           (1+d) d +d 2 k 3
                                               2
                                                                                   (    −1     )
                                           (1+d)(1+d 2 k 3 )                  (1+d)d 1 d 2 k 2 +d k 1 +k 1 k 3  3.7.d
                                                                                        2
                                             (1+d)d 2 k 2 k 3                   (1+d)d 1 d 2 k 2 (1+k 1 k 3 )  3.8.d
                                (1+d)d 2 k 2 k 3    (1+d)d 2 k 3  Null  Null    (1+d)d 1 d 2 k 3 (k 1 +k 2 )  3.9.d
                                                                                 −2
                                                                                       −2
                                                           −1
                  −1  d 1 k 2 d 1 k 3  (1+d)d 2 k 4  (1+d)d 2 k 5  (1+d)d k 6 (1+d)d 2 k 7 (1+d)d 1 d 2 (d k 1 k 5 +d k 2 k 6 +k 3 k 7 +k 4 ) 3.10.d
                   d k 1                                   2                     1     2
                  1
                                                                                 −1
                                                           −1
                                                                                       −2

                   d 1 k 1 d 1 k 2 d 1 k 3     (1+d)d 2 k 4    (1+d)d 2 k 5    (1+d)d k 6 (1+d)d 2 k 7 (1+d)d 1 d 2 (d k 1 k 5 +d k 2 k 6 +k 3 k 7 +k 4 ) 3.11.d

                                                                                       2
                                                                                 1
                                                           2



                    (2) 签名第  2  部分   s 的中间值  s 1 = d 2 r +w γ+1 mod q s 2 = d 2 w γ+2 mod q,..., s γ+1 = d 2 w 2γ+1 mod q .
                                                (
                                                      )
                                                             ,
                 其中, r 是公开的信息且不包含任何          Bob  的私密信息,   s 1 ,..., s γ+1  包含  Bob  的私密信息  d 2 w γ+1 ,..., w 2γ+1  . Alice 试
                                                                                      ,
                 图求解下述方程组:

                                                   
                                                    s 1 −rd 2 −w γ+1 d 2 = 0
                                                   
                                                   
                                                   
                                                   
                                                     s 2 −d 2 w γ+2 = 0  ,
                                                   
                                                   
                                                           .
                                                           .
                                                   
                                                           .
                                                             [    ]
                 该方程组包含     γ +1 个方程、   γ +2 个未知数. Alice 令   d 2  在   1,q−1  区间上遍历取值, 并计算与之对应的  w j ( j ∈ [γ +1,
   293   294   295   296   297   298   299   300   301   302   303