Page 53 - 《软件学报》2024年第6期
P. 53

沈天琪 等: DDoop: 基于差分式     Datalog  求解的增量指针分析框架                                    2629


                 [29]  Szabó T. Incrementalizing production CodeQL analyses. In: Proc. of the 31st ACM Joint European Software Engineering Conf. and
                     Symp. on the Foundations of Software Engineering. San Francisco: ACM, 2023. 1716–1726. [doi: 10.1145/3611643.3613860]
                 [30]  Lu Y, Shang L, Xie XW, Xue JL. An incremental points-to analysis with CFL-reachability. In: Proc. of the 22nd Int’l Conf. on Compiler
                     Construction. Rome: Springer, 2013. 61–81. [doi: 10.1007/978-3-642-37051-9_4]
                 [31]  Arzt S, Bodden E. Reviser: Efficiently updating IDE-/IFDS-based data-flow analyses in response to incremental program changes. In:
                     Proc. of the 36th Int’l Conf. on Software Engineering. Hyderabad: ACM, 2014. 288–298. [doi: 10.1145/2568225.2568243]
                 [32]  Pacak  A,  Erdweg  S,  Szabó  T.  A  systematic  approach  to  deriving  incremental  type  checkers.  Proc.  of  the  ACM  on  Programming
                     Languages, 2020, 4(OOPSLA): 127. [doi: 10.1145/3428195]
                 [33]  Zwaan A, Van Antwerpen H, Visser E. Incremental type-checking for free: Using scope graphs to derive incremental type-checkers. Proc.
                     of the ACM on Programming Languages, 2022, 6(OOPSLA2): 140. [doi: 10.1145/3563303]
                 [34]  Zhao ZL, Wang XZ, Xu ZG, Tang ZH, Li YC, Di P. Incremental call graph construction in industrial practice. In: Proc. of the 45th
                     IEEE/ACM Int’l Conf. on Software Engineering: Software Engineering in Practice (ICSE-SEIP). Melbourne: IEEE, 2023. 471–482. [doi:
                     10.1109/ICSE-SEIP58684.2023.00048]
                 [35]  Gupta A, Mumick IS, Subrahmanian VS. Maintaining views incrementally. ACM SIGMOD Record, 1993, 22(2): 157–166. [doi: 10.1145/
                     170036.170066]
                 [36]  Szabó T, Erdweg S, Bergmann G. Incremental whole-program analysis in Datalog with lattices. In: Proc. of the 42nd ACM SIGPLAN Int’l
                     Conf. on Programming Language Design and Implementation. New York, ACM, 2021. 1–15. [doi: 10.1145/3453483.3454026]
                 [37]  Demers A, Reps T, Teitelbaum T. Incremental evaluation for attribute grammars with application to syntax-directed editors. In: Proc. of
                     the 8th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages. Williamsburg: ACM, 1981. 105–116. [doi: 10.1145/
                     567532.567544]
                 [38]  Pugh  W,  Teitelbaum  T.  Incremental  computation  via  function  caching.  In:  Proc.  of  the  16th  ACM  SIGPLAN-SIGACT  Symp.  on
                     Principles of Programming Languages. Austin: ACM, 1989. 315–328. [doi: 10.1145/75277.75305]
                 [39]  Carlsson M. Monads for incremental computing. ACM SIGPLAN Notices, 2002, 37(9): 26–35. [doi: 10.1145/583852.581482]
                 [40]  Anderson  D,  Blelloch  GE,  Baweja  A,  Acar  UA.  Efficient  parallel  self-adjusting  computation.  In:  Proc.  of  the  33rd  ACM  Symp.  on
                     Parallelism in Algorithms and Architectures. New York: ACM, 2021. 59–70. [doi: 10.1145/3409964.3461799]
                 [41]  Bhatotia P, Wieder A, Rodrigues R, Acar UA, Pasquin R. Incoop: MapReduce for incremental computations. In: Proc. of the 2nd ACM
                     Symp. on Cloud Computing. Cascais: ACM, 2011. 7. [doi: 10.1145/2038916.2038923]
                 [42]  McSherry  F,  Murray  DG,  Isaacs  R,  Isard  M.  Differential  dataflow.  In:  Proc.  of  the  6th  Biennial  Conf.  on  Innovative  Data  Systems
                     Research. Asilomar: CIDR, 2013.
                 [43]  Fan WF, Liu MY, Tian C, Xu RQ, Zhou JR. Incrementalization of graph partitioning algorithms. Proc. of the VLDB Endowment, 2020,
                     13(8): 1261–1274. [doi: 10.14778/3389133.3389142]
                 [44]  Mariappan M, Vora K. GraphBolt: Dependency-driven synchronous processing of streaming graphs. In: Proc. of the 14th EuroSys Conf.
                     Dresden: ACM, 2019. 25. [doi: 10.1145/3302424.3303974]
                 [45]  Han WT, Miao YS, Li KW, Wu M, Yang F, Zhou LD, Prabhakaran V, Chen WG, Chen EH. Chronos: A graph engine for temporal graph
                     analysis. In: Proc. of the 9th European Conf. on Computer Systems. Amsterdam: ACM, 2014. 1. [doi: 10.1145/2592798.2592799]
                 [46]  Ju WY, Li JX, Yu WR, Zhang RC. iGraph: An incremental data processing system for dynamic graph. Frontiers of Computer Science,
                     2016, 10(3): 462–476. [doi: 10.1007/s11704-016-5485-7]
                 [47]  Gu R, Zuo ZQ, Jiang X, Yin H, Wang ZK, Wang LZ, Li XD, Huang YH. Towards efficient large-scale interprocedural program static
                     analysis on distributed data-parallel computation. IEEE Trans. on Parallel and Distributed Systems, 2021, 32(4): 867–883. [doi: 10.1109/
                     TPDS.2020.3036190]

                 附中文参考文献:
                  [8]  刘博涵, 张贺, 董黎明. DevOps 中国调查研究. 软件学报, 2019, 30(10): 3206–3226. http://www.jos.org.cn/1000-9825/5796.htm [doi:
                     10.13328/j.cnki.jos.005796]
                 [18]  谭添, 马晓星, 许畅, 马春燕, 李樾. Java 指针分析综述. 计算机研究与发展, 2023, 60(2): 274–293. [doi: 10.7544/issn1000-1239.
                     202220901]
   48   49   50   51   52   53   54   55   56   57   58