Page 52 - 《软件学报》2024年第6期
P. 52

2628                                                       软件学报  2024  年第  35  卷第  6  期


                     2491956.2462159]
                                                                  ®
                  [5]  Smaragdakis Y, Balatsouras G. Pointer analysis. Foundations and Trends in Programming Languages, 2015, 2(1): 1–69. [doi: 10.1561/
                     2500000014]
                  [6]  Tan T, Li Y, Xue JL. Efficient and precise points-to analysis: Modeling the heap by merging equivalent automata. In: Proc. of the 38th
                     ACM SIGPLAN Conf. on Programming Language Design and Implementation. Barcelona: ACM, 2017. 278–291. [doi: 10.1145/3062341.
                     3062360]
                  [7]  Li Y, Tan T, Møller A, Smaragdakis Y. Scalability-first pointer analysis with self-tuning context-sensitivity. In: Proc. of the 26th ACM
                     Joint Meeting on European Software Engineering Conf. and the Symp. on the Foundations of Software Engineering. Lake Buena Vista:
                     ACM, 2018. 129–140. [doi: 10.1145/3236024.3236041]
                  [8]  Liu BH, Zhang H, Dong LM. Survey on state of DevOps in China. Ruan Jian Xue Bao/Journal of Software, 2019, 30(10): 3206–3226 (in
                     Chinese with English abstract). http://www.jos.org.cn/1000-9825/5796.htm [doi: 10.13328/j.cnki.jos.005796]
                  [9]  Liu BZ, Huang J, Rauchwerger L. Rethinking incremental and parallel pointer analysis. ACM Trans. on Programming Languages and
                     Systems, 2019, 41(1): 6. [doi: 10.1145/3293606]
                 [10]  Liu BZ, Huang J. SHARP: Fast incremental context-sensitive pointer analysis for Java. Proc. of the ACM on Programming Languages,
                     2022, 6(OOPSLA1): 88. [doi: 10.1145/3527332]
                     Springer, 2003. 153–169. [doi: 10.1007/3-540-36579-6_12]
                 [11]  Bravenboer M, Smaragdakis Y. Strictly declarative specification of sophisticated points-to analyses. In: Proc. of the 24th ACM SIGPLAN
                     Conf. on Object Oriented Programming Systems Languages and Applications. Orlando: ACM, 2009. 243–262. [doi: 10.1145/1640089.
                     1640108]
                 [12]  Li Y, Tan T, Møller A, Smaragdakis Y. Precision-guided context sensitivity for pointer analysis. Proc. of the ACM on Programming
                     Languages, 2018, 2(OOPSLA): 1–29. [doi: 10.1145/3276511]
                 [13]  Ma WJ, Yang SY, Tan T, Ma XX, Xu C, Li Y. Context sensitivity without contexts: A cut-shortcut approach to fast and precise pointer
                     analysis. Proc. of the ACM on Programming Languages, 2023, 7(PLDI): 128. [doi: 10.1145/3591242]
                 [14]  Ryzhyk L, Budiu M. Differential Datalog. In: Proc. of the 3rd Int’l Workshop on the Resurgence of Datalog in Academia and Industry Co-
                     located with the 15th Int’l Conf. on Logic Programming and Nonmonotonic Reasoning. Philadelphia: CEUR-WS.org, 2019. 56–67.
                 [15]  Jordan H, Scholz B, Subotić P. Soufflé: On synthesis of program analyzers. In: Proc. of the 28th Int’l Conf. on Computer Aided Verifica-
                     tion. Toronto: Springer, 2016. 422–430. [doi: 10.1007/978-3-319-41540-6_23]
                 [16]  Zhao D, Subotic P, Raghothaman M, Scholz B. Towards elastic incrementalization for datalog. In: Proc. of the 23rd Int’l Symp. on
                     Principles and Practice of Declarative Programming. New York: ACM, 2021. 20. [doi: 10.1145/3479394.3479415]
                 [17]  Ritsogianni AA. Incremental static analysis with differential Datalog [BS. Thesis]. Athens: University of Athens, 2019.
                 [18]  Tan T, Ma XX, Xu C, Ma CY, Li Y. Survey on Java pointer analysis. Journal of Computer Research and Development, 2023, 60(2):
                     274–293 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.202220901]
                 [19]  Whaley J, Avots D, Carbin M, Lam MS. Using Datalog with binary decision diagrams for program analysis. In: Proc. of the 3rd Asian
                     Symp. on Programming Languages and Systems. Tsukuba: Springer, 2005. 97–118. [doi: 10.1007/11575467_8]
                 [20]  Antoniadis T, Triantafyllou K, Smaragdakis Y. Porting doop to Soufflé: A tale of inter-engine portability for Datalog-based analyses. In:
                     Proc. of the 6th ACM SIGPLAN Int’l Workshop on State of the Art in Program Analysis. Barcelona: ACM, 2017. 25–30. [doi: 10.1145/
                     3088515.3088522]
                 [21]  Use of Zipper in Doop. 2021. https://bitbucket.org/yanniss/doop/issues/41/use-of-zipper
                 [22]  Vallée-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V. Soot—A Java bytecode optimization framework. In: Proc. of the 1999
                     Conf. of the Centre for Advanced Studies on Collaborative research. Mississauga: IBM Press, 1999. [doi: 10.5555/781995.782008]
                 [23]  Lhoták O, Hendren L. Scaling Java points-to analysis using SPARK. In: Proc. of the 12th Int’l Conf. on Compiler Construction. Warsaw:

                 [24]  Lhoták O, Hendren L. Evaluating the benefits of context-sensitive points-to analysis using a BDD-based implementation. ACM Trans. on
                     Software Engineering and Methodology, 2008, 18(1): 3. [doi: 10.1145/1391984.1391987]
                 [25]  WALA. Watson Libraries for Analysis (WALA). 2023. https://wala.sourceforge.net/
                 [26]  He DJ, Lu JB, Xue JL. Qilin: A new framework for supporting fine-grained context-sensitivity in Java pointer analysis. In: Proc. of the
                     36th European Conf. on Object-oriented Programming (ECOOP 2022). Berlin: Leibniz-Zentrum für Informatik, 2022. 30. [doi: 10.4230/
                     LIPIcs.ECOOP.2022.30]
                 [27]  Tan T, Li Y. Tai-e: A developer-friendly static analysis framework for Java by harnessing the good designs of classics. In: Proc. of the
                     32nd ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 1093–1105. [doi: 10.1145/3597926.3598120]
                 [28]  CodeQL. 2024. https://codeql.github.com/
   47   48   49   50   51   52   53   54   55   56   57