Page 491 - 《软件学报》2024年第6期
P. 491
张浩南 等: 高清几何缓存多尺度特征融合的渲染超分方法 3067
122:1–122:12. [doi: 10.1145/2766977]
[11] Nalbach O, Arabadzhiyska E, Mehta D, Seidel HP, Ritschel T. Deep shading: Convolutional neural networks for screen space shading.
Computer Graphics Forum, 2017, 36(4): 65–78. [doi: 10.1111/cgf.13225]
[12] Isobe T, Zhu F, Jia X, Wang SJ. Revisiting temporal modeling for video super-resolution. arXiv:2008.05765, 2020.
[13] Haris M, Shakhnarovich G, Ukita N. Space-time-aware multi-resolution video enhancement. In: Proc. of the 2020 IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020. 2856–2865. [doi: 10.1109/CVPR42600.2020.00293]
[14] Liao RJ, Tao X, Li RY, Ma ZY, Jia JY. Video super-resolution via deep draft-ensemble learning. In: Proc. of the 2015 IEEE Int’l Conf.
on Computer Vision. Santiago: IEEE, 2015. 531–539. [doi: 10.1109/ICCV.2015.68]
[15] Chan KCK, Zhou SC, Xu XY, Loy CC. BasicVSR++: Improving video super-resolution with enhanced propagation and alignment. In:
Proc. of the 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 5962–5971. [doi: 10.1109/
CVPR52688.2022.00588]
[16] Dong C, Loy CC, He KM, Tang XO. Learning a deep convolutional network for image super-resolution. In: Proc. of the 13th European
Conf. on Computer Vision. Zurich: Springer, 2014. 184–199. [doi: 10.1007/978-3-319-10593-2_13]
[17] Lim B, Son S, Kim H, Nah S, Lee KM. Enhanced deep residual networks for single image super-resolution. In: Proc. of the 2017 IEEE
Conf. on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE. 2017. 1132–1140. [doi: 10.1109/CVPRW.2017.151]
[18] Zhang YL, Li KP, Li K, Wang LC, Zhong BN, Fu, Y. Image super-resolution using very deep residual channel attention networks. In:
Proc. of the 15th European Conf. on Computer Vision (ECCV). Munich: Springer, 2018. 294–310. [doi: 10.1007/978-3-030-01234-2_18]
[19] Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, AitkenA, Tejani A, Totz J, Wang ZH and Shi WZ. Photo-realistic
single image super-resolution using a generative adversarial network. In: Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern
Recognition. Honolulu: IEEE, 2017. 105–114. [doi: 10.1109/CVPR.2017.19]
[20] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.
[21] Weng WH, Zhu X. INet: Convolutional networks for biomedical image segmentation. IEEE Access, 2021, 9: 16591–166603. [doi: 10.
1109/ACCESS.2021.3053408]
[22] Ding L, Ding SF, Zhang J, Zhang ZC. Single image super-resolution reconstruction based on VGG energy loss. Ruan Jian Xue
Bao/Journal of Software, 2021, 32(11): 3659–3668. (in Chinese with English abstract) http://www.jos.org.cn/1000-9825/6053.htm [doi:
10.13328/j.cnki.jos.006053]
[23] Pan ZX, Yu J, Xiao CB, Sun WD. Single image super resolution based on adaptive multi-dictionary learning. Acta Electronica Sinica,
2015, 43(2): 209–216 (in Chinese with English abstract). [doi: 10.3969/j.issn.0372-2112.2015.02.001]
[24] Caballero J, Ledig C, Aitken A, Acosta A, Totz J, Wang ZH, Shi WZ. Real-time video super-resolution with spatio-temporal networks
and motion compensation. In: Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017.
2848–2857. [doi: 10.1109/CVPR.2017.304]
[25] Wang XT, Chan KCK, Yu K, Dong C, Loy CC. EDVR: Video restoration with enhanced deformable convolutional networks. In: Proc. of
the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach: IEEE, 2019. 1954–1963.
[doi: 10.1109/CVPRW.2019.00247]
[26] Yi P, Wang ZY, Jiang K, Jiang JJ, Ma JY. Progressive fusion video super-resolution network via exploiting non-local spatio-temporal
correlations. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 3106–3115. [doi: 10.1109/ICCV.2019.
00320]
[27] Lu YF, Xie N, Shen HT. DMCR-GAN: Adversarial denoising for Monte Carlo renderings with residual attention networks and
hierarchical features modulation of auxiliary buffers. In: SIGGRAPH Asia 2020 Technical Communications. ACM, 2020. 5. [doi: 10.
1145/3410700.3425426]
[28] Chaitanya CRA, Kaplanyan AS, Schied C, Salvi M, Lefohn A, Nowrouzezahrai D, Aila T. Interactive reconstruction of Monte Carlo
image sequences using a recurrent denoising autoencoder. ACM Trans. on Graphics, 2017, 36(4): 98:1–98:12. [doi: 10.1145/3072959.
3073601]
[29] Guo J, Fu XH, Lin LQ, Ma HJ, Guo YW, Liu SQ, Yan LQ. ExtraNet: Real-time extrapolated rendering for low-latency temporal
supersampling. ACM Trans. on Graphics, 2021, 40(6): 278:1–278:16. [doi: 10.1145/3478513.3480531]
[30] Du WJ, Feng JQ. A unified anti-aliasing method for deferred shading. Journal of Computer-aided Design & Computer Graphics, 2016,
28(1): 58–67 (in Chinese with English abstract). [doi: 10.3969/j.issn.1003-9775.2016.01.008]
[31] Shao P, Zhou W, Li GQ, Wu ZJ. Improved anti-aliasing algorithm based on deferred shading. Computer Science, 2018, 45(11A):
218–221, 225 (in Chinese with English abstract).
[32] Briedis KM, Djelouah A, Meyer M, McGonigal I, Gross M, Schroers C. Neural frame interpolation for rendered content. ACM Trans. on