Page 491 - 《软件学报》2024年第6期
P. 491

张浩南 等: 高清几何缓存多尺度特征融合的渲染超分方法                                                     3067


                     122:1–122:12. [doi: 10.1145/2766977]
                 [11]  Nalbach O, Arabadzhiyska E, Mehta D, Seidel HP, Ritschel T. Deep shading: Convolutional neural networks for screen space shading.
                     Computer Graphics Forum, 2017, 36(4): 65–78. [doi: 10.1111/cgf.13225]
                 [12]  Isobe T, Zhu F, Jia X, Wang SJ. Revisiting temporal modeling for video super-resolution. arXiv:2008.05765, 2020.
                 [13]  Haris M, Shakhnarovich G, Ukita N. Space-time-aware multi-resolution video enhancement. In: Proc. of the 2020 IEEE/CVF Conf. on
                     Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020. 2856–2865. [doi: 10.1109/CVPR42600.2020.00293]
                 [14]  Liao RJ, Tao X, Li RY, Ma ZY, Jia JY. Video super-resolution via deep draft-ensemble learning. In: Proc. of the 2015 IEEE Int’l Conf.
                     on Computer Vision. Santiago: IEEE, 2015. 531–539. [doi: 10.1109/ICCV.2015.68]
                 [15]  Chan KCK, Zhou SC, Xu XY, Loy CC. BasicVSR++: Improving video super-resolution with enhanced propagation and alignment. In:
                     Proc. of the 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 5962–5971. [doi: 10.1109/
                     CVPR52688.2022.00588]
                 [16]  Dong C, Loy CC, He KM, Tang XO. Learning a deep convolutional network for image super-resolution. In: Proc. of the 13th European
                     Conf. on Computer Vision. Zurich: Springer, 2014. 184–199. [doi: 10.1007/978-3-319-10593-2_13]
                 [17]  Lim B, Son S, Kim H, Nah S, Lee KM. Enhanced deep residual networks for single image super-resolution. In: Proc. of the 2017 IEEE
                     Conf. on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE. 2017. 1132–1140. [doi: 10.1109/CVPRW.2017.151]

                 [18]  Zhang YL, Li KP, Li K, Wang LC, Zhong BN, Fu, Y. Image super-resolution using very deep residual channel attention networks. In:
                     Proc. of the 15th European Conf. on Computer Vision (ECCV). Munich: Springer, 2018. 294–310. [doi: 10.1007/978-3-030-01234-2_18]
                 [19]  Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, AitkenA, Tejani A, Totz J, Wang ZH and Shi WZ. Photo-realistic
                     single image super-resolution using a generative adversarial network. In: Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern
                     Recognition. Honolulu: IEEE, 2017. 105–114. [doi: 10.1109/CVPR.2017.19]
                 [20]  Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.
                 [21]  Weng WH, Zhu X. INet: Convolutional networks for biomedical image segmentation. IEEE Access, 2021, 9: 16591–166603. [doi: 10.
                     1109/ACCESS.2021.3053408]
                 [22]  Ding  L,  Ding  SF,  Zhang  J,  Zhang  ZC.  Single  image  super-resolution  reconstruction  based  on  VGG  energy  loss.  Ruan  Jian  Xue
                     Bao/Journal of Software, 2021, 32(11): 3659–3668. (in Chinese with English abstract) http://www.jos.org.cn/1000-9825/6053.htm [doi:
                     10.13328/j.cnki.jos.006053]
                 [23]  Pan ZX, Yu J, Xiao CB, Sun WD. Single image super resolution based on adaptive multi-dictionary learning. Acta Electronica Sinica,
                     2015, 43(2): 209–216 (in  Chinese  with  English  abstract). [doi: 10.3969/j.issn.0372-2112.2015.02.001]
                 [24]  Caballero J, Ledig C, Aitken A, Acosta A, Totz J, Wang ZH, Shi WZ. Real-time video super-resolution with spatio-temporal networks
                     and  motion  compensation.  In:  Proc.  of  the  2017  IEEE  Conf.  on  Computer  Vision  and  Pattern  Recognition.  Honolulu:  IEEE,  2017.
                     2848–2857. [doi: 10.1109/CVPR.2017.304]
                 [25]  Wang XT, Chan KCK, Yu K, Dong C, Loy CC. EDVR: Video restoration with enhanced deformable convolutional networks. In: Proc. of
                     the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach: IEEE, 2019. 1954–1963.
                     [doi: 10.1109/CVPRW.2019.00247]
                 [26]  Yi P, Wang ZY, Jiang K, Jiang JJ, Ma JY. Progressive fusion video super-resolution network via exploiting non-local spatio-temporal
                     correlations. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 3106–3115. [doi: 10.1109/ICCV.2019.
                     00320]
                 [27]  Lu  YF,  Xie  N,  Shen  HT.  DMCR-GAN:  Adversarial  denoising  for  Monte  Carlo  renderings  with  residual  attention  networks  and
                     hierarchical features modulation of auxiliary buffers. In: SIGGRAPH Asia 2020 Technical Communications. ACM, 2020. 5. [doi: 10.
                     1145/3410700.3425426]
                 [28]  Chaitanya CRA, Kaplanyan AS, Schied C, Salvi M, Lefohn A, Nowrouzezahrai D, Aila T. Interactive reconstruction of Monte Carlo
                     image sequences using a recurrent denoising autoencoder. ACM Trans. on Graphics, 2017, 36(4): 98:1–98:12. [doi: 10.1145/3072959.
                     3073601]
                 [29]  Guo  J,  Fu  XH,  Lin  LQ,  Ma  HJ,  Guo  YW,  Liu  SQ,  Yan  LQ.  ExtraNet:  Real-time  extrapolated  rendering  for  low-latency  temporal
                     supersampling. ACM Trans. on Graphics, 2021, 40(6): 278:1–278:16. [doi: 10.1145/3478513.3480531]
                 [30]  Du WJ, Feng JQ. A unified anti-aliasing method for deferred shading. Journal of Computer-aided Design & Computer Graphics, 2016,
                     28(1): 58–67 (in  Chinese  with  English  abstract). [doi: 10.3969/j.issn.1003-9775.2016.01.008]
                 [31]  Shao  P,  Zhou  W,  Li  GQ,  Wu  ZJ.  Improved  anti-aliasing  algorithm  based  on  deferred  shading.  Computer  Science,  2018,  45(11A):
                     218–221, 225 (in  Chinese  with  English  abstract).
                 [32]  Briedis KM, Djelouah A, Meyer M, McGonigal I, Gross M, Schroers C. Neural frame interpolation for rendered content. ACM Trans. on
   486   487   488   489   490   491   492   493   494