Page 435 - 《软件学报》2024年第6期
P. 435

徐兰天 等: 面向超图数据的最大独立集算法                                                           3011


                     [doi: 10.1023/A:1016747704458]
                  [7]  Lee  G,  Ko  J,  Shin  K.  Hypergraph  motifs:  Concepts,  algorithms,  and  discoveries.  Proc.  of  the  VLDB  Endowment,  2020,  13(12):
                     2256–2269. [doi: 10.14778/3407790.3407823]
                  [8]  Yoon SE, Song H, Shin K, Yi Y. How much and when do we need higher-order information in hypergraphs? A case study on hyperedge
                     prediction. In: Proc. of the 2020 Web Conf. Taipei: ACM, 2020. 2627–2633. [doi: 10.1145/3366423.3380016]
                  [9]  Kook Y, Ko J, Shin K. Evolution of real-world hypergraphs: Patterns and models without oracles. In: Proc. of the 2020 IEEE Int’l Conf.
                     on Data Mining (ICDM). Sorrento: IEEE, 2020. 272–281. [doi: 10.1109/ICDM50108.2020.00036]
                 [10]  Benson AR, Abebe R, Schaub MT, Jadbabaie A, Kleinberg J. Simplicial closure and higher-order link prediction. Proc.of the National
                     Academy of Sciences of the United States of America, 2018, 115(48): E11221–E11230. [doi: 10.1073/pnas.1800683115]
                 [11]  Finocchi  I,  Finocchi  M,  Fusco  EG.  Clique  counting  in  mapreduce:  Algorithms  and  experiments.  ACM  Journal  of  Experimental
                     Algorithmics, 2015, 20: 1–20. [doi: 10.1145/2794080]
                 [12]  Hu XC, Tao FY, Chung CW. I/o-efficient algorithms on triangle listing and counting. ACM Trans. on Database Systems, 2014, 39(4): 27.
                     [doi: 10.1145/2691190.2691193]
                 [13]  Estrada E, Rodríguez-Velázquez JA. Subgraph centrality and clustering in complex hyper-networks. Physica A: Statistical Mechanics and
                     its Applications, 2006, 364: 581–594. [doi: 10.1016/j.physa.2005.12.002]
                     2012, 196(1): 611–634. [doi: 10.1007/s10479-012-1124-3]
                 [14]  Gregori E, Lenzini L, Mainardi S. Parallel k-clique community detection on large-scale networks. IEEE Trans. on Parallel and Distributed
                     Systems, 2013, 24(8): 1651–1660. [doi: 10.1109/TPDS.2012.229]
                 [15]  Do MT, Yoon SE, Hooi B, Shin K. Structural patterns and generative models of real-world hypergraphs. In: Proc. of the 26th ACM
                     SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. Virtual Event: ACM, 2020. 176–186. [doi: 10.1145/3394486.3403060]
                 [16]  Benson AR, Kumar R, Tomkins A. Sequences of sets. In: Proc. of the 24th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data
                     Mining. London: ACM, 2018. 1148–1157. [doi: 10.1145/3219819.3220100]
                 [17]  Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young JG, Petri G. Networks beyond pairwise interactions: Structure
                     and dynamics. Physics Reports, 2020, 874: 1–92. [doi: 10.1016/j.physrep.2020.05.004]
                 [18]  Carraghan R, Pardalos PM. An exact algorithm for the maximum clique problem. Operations Research Letters, 1990, 9(6): 375–382. [doi:
                     10.1016/0167-6377(90)90057-C]
                 [19]  Pardalos PM, Rodgers GP. A branch and bound algorithm for the maximum clique problem. Computers & Operations Research, 1992,
                     19(5): 363–375. [doi: 10.1016/0305-0548(92)90067-F]
                 [20]  Östergård PRJ. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 2002, 120(1–3): 197–207. [doi: 10.
                     1016/S0166-218X(01)00290-6]
                 [21]  Li CM, Quan Z. An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem. Proc. of the AAAI Conf. on
                     Artificial Intelligence, 2010, 24(1): 128–133. [doi: 10.1609/aaai.v24i1.7536]
                 [22]  Xiao MY, Nagamochi H. Exact algorithms for maximum independent set. Information and Computation, 2017, 255: 126–146. [doi: 10.
                     1016/j.ic.2017.06.001]
                 [23]  Akiba  T,  Iwata  Y.  Branch-and-reduce  exponential/FPT  algorithms  in  practice:  A  case  study  of  vertex  cover.  Theoretical  Computer
                     Science, 2016, 609: 211–225. [doi: 10.1016/j.tcs.2015.09.023]
                 [24]  Karp RM. Reducibility among combinatorial problems. In: Proc. of the 1972 Symp. on the Complexity of Computer Computations. New
                     York: Plenum Press, 1972. 85–103. [doi: 10.1007/978-1-4684-2001-2_9]
                 [25]  Jagota A, Sanchis LA. Adaptive, restart, randomized greedy heuristics for maximum clique. Journal of Heuristics, 2001, 7(6): 565–585.
                     [doi: 10.1023/A:1011925109392]
                 [26]  Pullan W. Phased local search for the maximum clique problem. Journal of Combinatorial Optimization, 2006, 12(3): 303–323. [doi: 10.
                     1007/s10878-006-9635-y]
                 [27]  Wu QH, Hao JK, Glover F. Multi-neighborhood tabu search for the maximum weight clique problem. Annals of Operations Research,

                 [28]  Zhou XD, Wang LA, Chen L. Research on using heuristic algorithms to solve MCP. Computer Engineering and Design, 2007, 28(18):
                     4329–4332 (in  Chinese  with  English  abstract). [doi: 10.3969/j.issn.1000-7024.2007.18.002]
                 [29]  Feng Y. A heuristic algorithm for maximum independent set problem in graph theory. Journal of the Hebei Academy of Sciences, 2021,
                     38(3): 9–13 (in  Chinese  with  English  abstract). [doi: 10.16191/j.cnki.hbkx.2021.03.002]
                 [30]  Liu Y, Lu J, Yang H, Xiao XK, Wei ZW. Towards maximum independent sets on massive graphs. Proc. of the VLDB Endowment, 2015,
                     8(13): 2122–2133. [doi: 10.14778/2831360.2831366]
                 [31]  Lamm S, Sanders P, Schulz C, Strash D, Werneck RF. Finding near-optimal independent sets at scale. In: Proc. of the 2016 Meeting on
   430   431   432   433   434   435   436   437   438   439   440