Page 398 - 《软件学报》2024年第6期
P. 398

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 Journal of Software,2024,35(6):2974−2998 [doi: 10.13328/j.cnki.jos.006915]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                              *
                 融合自适应周期与兴趣量因子的轻量级                               GCN    推荐

                 钱忠胜,    叶祖铼,    姚昌森,    张    丁,    黄    恒,    秦朗悦


                 (江西财经大学 信息管理学院, 江西 南昌 330013)
                 通信作者: 钱忠胜, E-mail: changesme@163.com

                 摘 要: 推荐系统在成熟的数据挖掘技术推动下, 已能高效地利用评分数据、行为轨迹等显隐性信息, 再与复杂而
                 先进的深度学习技术相结合, 取得了很好的效果. 同时, 其应用需求也驱动着对基础数据的深度挖掘与利用, 以及
                 对技术要求的减负成为一个研究热点. 基于此, 提出一种利用                   GCN (graph convolutional network) 方法进行深度信
                 息融合的轻量级推荐模型         LG_APIF. 该模型结合行为记忆, 通过艾宾浩斯遗忘曲线模拟用户兴趣变化过程, 采用线
                 性回归等相对轻量的传统方法挖掘项目的自适应周期等深度信息; 分析用户当前的兴趣分布, 计算项目的兴趣量,
                 以获取用户的潜在兴趣类型; 构建用户-类型-项目三元组的图结构, 并结合减负后的                         GCN  技术来生成最终的项目
                 推荐列表. 实验验证所提方法的有效性, 通过与              8  个经典模型在    Last.fm, Douban, Yelp, MovieLens 数据集中的对
                 比, 表明该方法在     Precision, Recall 及  NDCG  指标上都得到良好改善, 其中, Precision  平均提升  2.11%, Recall 平均
                 提升  1.01%, NDCG  平均提升  1.48%.
                 关键词: 行为记忆; 自适应周期; 兴趣量因子; 图卷积网络; 推荐系统
                 中图法分类号: TP311

                 中文引用格式: 钱忠胜, 叶祖铼, 姚昌森, 张丁, 黄恒, 秦朗悦. 融合自适应周期与兴趣量因子的轻量级GCN推荐. 软件学报, 2024,
                 35(6): 2974–2998. http://www.jos.org.cn/1000-9825/6915.htm
                 英文引用格式: Qian ZS, Ye ZL, Yao CS, Zhang D, Huang H, Qin LY. Lightweight GCN Recommendation Combining Adaptive
                 Period and Interest Factor. Ruan Jian Xue Bao/Journal of Software, 2024, 35(6): 2974–2998 (in Chinese). http://www.jos.org.cn/1000-
                 9825/6915.htm

                 Lightweight GCN Recommendation Combining Adaptive Period and Interest Factor

                 QIAN Zhong-Sheng, YE Zu-Lai, YAO Chang-Sen, ZHANG Ding, HUANG Heng, QIN Lang-Yue
                 (School of Information Management, Jiangxi University of Finance & Economics, Nanchang 330013, China)
                 Abstract:  Driven  by  mature  data  mining  technologies,  the  recommendation  system  has  been  able  to  efficiently  utilize  explicit  and  implicit
                 information  such  as  score  data  and  behavior  traces  and  then  combine  the  information  with  complex  and  advanced  deep  learning
                 technologies  to  achieve  sound  results.  Meanwhile,  its  application  requirements  also  drive  the  in-depth  mining  and  utilization  of  basic  data
                 and  the  load  reduction  of  technical  requirements  to  become  research  hotspots.  On  this  basis,  a  lightweight  recommendation  model,  namely
                 LG_APIF  is  proposed,  which  uses  the  graph  convolutional  network  (GCN)  method  to  deeply  integrate  information.  According  to  behavior
                 memory,  the  model  employs  Ebbinghaus  forgetting  curve  to  simulate  the  users’  interest  change  process  and  adopts  linear  regression  and
                 other relatively lightweight traditional methods to mine adaptive periods and other depth information of items. In addition, it analyzes users’
                 current  interest  distribution  and  calculates  the  interest  value  of  the  item  to  obtain  users’  potential  interest  type.  It  further  constructs  the
                 graph  structure  of  the  user-type-item  triplet  and  uses  GCN  technology  after  load  reduction  to  generate  the  final  item  recommendation  list.
                 The  experiments  have  verified  the  effectiveness  of  the  proposed  method.  Through  the  comparison  with  eight  classical  models  on  the
                 datasets  of  Last.fm,  Douban,  Yelp,  and  MovieLens,  it  is  found  that  the  Precision,  Recall,  and  NDCG  of  the  proposed  method  are
                 improved, with an average improvement of 2.11% on Precision, 1.01% on Recall, and 1.48% on NDCG, respectively.
                 Key words:  behavior memory; adaptive period; interest factor; graph convolutional network (GCN); recommendation system


                 *    基金项目: 国家自然科学基金  (62262025); 江西省自然科学基金重点项目  (20224ACB202012)
                  收稿时间: 2022-06-18; 修改时间: 2022-10-27; 采用时间: 2023-02-07; jos 在线出版时间: 2023-08-09
                  CNKI 网络首发时间: 2023-08-10
   393   394   395   396   397   398   399   400   401   402   403