Page 396 - 《软件学报》2024年第6期
P. 396
2972 软件学报 2024 年第 35 卷第 6 期
[doi: 10.1145/3335772.3335939]
[46] Butterstein D, Martin D, Stolze K, Beier F, Zhong J, Wang LY. Replication at the speed of change: A fast, scalable replication solution
for near real-time HTAP processing. Proc. of the VLDB Endowment, 2020, 13(12): 3245–3257. [doi: 10.14778/3415478.3415548]
[47] Chen JJ, Ding YH, Liu Y, Li FS, Zhang L, Zhang MY, Wei K, Cao LX, Zou D, Liu Y, Zhang L, Shi R, Ding W, Wu K, Luo SY, Sun J,
Liang YM. ByteHTAP: Bytedance’s HTAP system with high data freshness and strong data consistency. Proc. of the VLDB Endowment,
2022, 15(12): 3411–3424. [doi: 10.14778/3554821.3554832]
[48] MySQL Heatwave. Real-time analytics for MySQL database service. 2021. https://www.mysql.com/products/mysqlheatwave/
[49] Verbitski A, Gupta A, Saha D, Brahmadesam M. Amazon Aurora: Design considerations for high throughput cloud-native relational
databases. In: Proc. of the 2017 ACM Int’l Conf. on Management of Data. Chicago: ACM, 2017. 1041–1052. [doi: 10.1145/3035918.
3056101]
[50] Gifford DK. Weighted voting for replicated data. In: Proc. of the 7th ACM Symp. on Operating Systems Principles. Pacific Grove: ACM,
1979. 150–162. [doi: 10.1145/800215.806583]
[51] Buffer space management. PolarDB. 2022 (in Chinese). https://apsaradb.github.io/PolarDB-for-PostgreSQL/zh/theory/buffer-management.
html#lazy-checkpoint
[52] Haubenschild M, Sauer C, Neumann T, Leis V. Rethinking logging, checkpoints, and recovery for high-performance storage engines. In:
Proc. of the 2020 ACM SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020. 877–892. [doi: 10.1145/3318464.3389716]
[53] Xia Y, Yu XY, Pavlo A, Devadas S. Taurus: Lightweight parallel logging for in-memory database management systems. Proc. of the
VLDB Endowment, 2021, 14(2): 189–201. [doi: 10.14778/3425879.3425889]
[54] Jung H, Han H, Kang S. Scalable database logging for multicores. Proc. of the VLDB Endowment, 2017, 11(2): 135–148. [doi: 10.14778/
3149193.3149195]
[55] He XL, Cai P, Zhou X, Zhou AY. Continuously bulk loading over range partitioned tables for large scale historical data. In: Proc. of the
37th IEEE Int’l Conf. on Data Engineering (ICDE). Chania: IEEE, 2021. 960–971. [doi: 10.1109/ICDE51399.2021.00088]
[56] Kim J, Yu J, Ahn J, Kang S, Jung H. Diva: Making MVCC systems HTAP-friendly. In: Proc. of the 2022 Int’l Conf. on Management of
Data. Philadelphia: ACM, 2022. 49–64. [doi: 10.1145/3514221.3526135]
[57] Sharma A, Schuhknecht FM, Dittrich J. Accelerating analytical processing in MVCC using fine-granular high-frequency virtual
snapshotting. In: Proc. of the 2018 Int’l Conf. on Management of Data. Houston: ACM, 2018. 245–258. [doi: 10.1145/3183713.3196904]
[58] Saxena H, Golab L, Idreos S, Ilyas IF. Real-time LSM-trees for htap workloads. arXiv:2101.06801, 2021.
[59] Dai YF, Xu YE, Ganesan A, Alagappan R, Kroth B, Arpaci-Dusseau AC, Arpaci-Dusseau RH. From wiscKey to bourbon: A learned
index for log-structured merge trees. In: Proc. of the 14th USENIX Conf. on Operating Systems Design and Implementation. Berkeley:
USENIX Association, 2020. 9.
[60] Zhong WS, Chen C, Wu XB, Jiang S. REMIX: Efficient range query for LSM-trees. In: Proc. of the 19th USENIX Conf. on File and
Storage Technologies. USENIX Association, 2021. 51–64.
[61] Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P. An asymptotically optimal multiversion B-tree. The VLDB Journal, 1996, 5(4):
264–275. [doi: 10.1007/s007780050028]
[62] Lomet D, Salzberg B. The performance of a multiversion access method. In: Proc. of the 1990 ACM SIGMOD Int ’l Conf. on
Management of Data. Atlantic City: ACM, 1990. 353–363. [doi: 10.1145/93597.98744]
[63] Gottstein R, Goyal R, Hardock S, Petrov I, Buchmann A. MV-IDX: Indexing in multi-version databases. In: Proc. of the 18th Int ’l
Database Engineering & Applications Symp. Porto: ACM, 2014. 142–148. [doi: 10.1145/2628194.2628911]
[64] Riegger C, Vinçon T, Gottstein R, Petrov I. MV-PBT: Multi-version indexing for large datasets and HTAP workloads. In: Proc. of the
23rd Int’l Conf. on Extending Database Technology. Copenhagen: OpenProceedings.org, 2020. 217–228.
[65] Sun YH, Blelloch GE, Lim WS, Pavlo A. On supporting efficient snapshot isolation for hybrid workloads with multi-versioned indexes.
Proc. of the VLDB Endowment, 2019, 13(2): 211–225. [doi: 10.14778/3364324.3364334]
[66] Lee J, Shin H, Park CG, Ko S, Noh J, Chuh Y, Stephan W, Han WS. Hybrid garbage collection for multi-version concurrency control in
SAP HANA. In: Proc. of the 2016 Int’l Conf. on Management of Data. San Francisco: ACM, 2016. 1307–1318. [doi: 10.1145/2882903.
2903734]
[67] Kim J, Cho H, Kim K, Yu J, Kang S, Jung H. Long-lived transactions made less harmful. In: Proc. of the 2020 ACM SIGMOD Int’l
Conf. on Management of Data. Portland: ACM, 2020. 495–510. [doi: 10.1145/3318464.3389714]
[68] Ritchie DM, Thompson K. The UNIX time-sharing system. The Bell System Technical Journal, 1978, 57(6): 1905–1929. [doi: 10.1002/j.
1538-7305.1978.tb02136.x]
[69] Pavlo A, Butrovich M, Ma L, Menon P, Lim WS, Van Aken D, Zhang W. Make your database system dream of electric sheep: Towards