Page 396 - 《软件学报》2024年第6期
P. 396

2972                                                       软件学报  2024  年第  35  卷第  6  期


                     [doi: 10.1145/3335772.3335939]
                 [46]  Butterstein D, Martin D, Stolze K, Beier F, Zhong J, Wang LY. Replication at the speed of change: A fast, scalable replication solution
                     for near real-time HTAP processing. Proc. of the VLDB Endowment, 2020, 13(12): 3245–3257. [doi: 10.14778/3415478.3415548]
                 [47]  Chen JJ, Ding YH, Liu Y, Li FS, Zhang L, Zhang MY, Wei K, Cao LX, Zou D, Liu Y, Zhang L, Shi R, Ding W, Wu K, Luo SY, Sun J,
                     Liang YM. ByteHTAP: Bytedance’s HTAP system with high data freshness and strong data consistency. Proc. of the VLDB Endowment,
                     2022, 15(12): 3411–3424. [doi: 10.14778/3554821.3554832]
                 [48]  MySQL Heatwave. Real-time analytics for MySQL database service. 2021. https://www.mysql.com/products/mysqlheatwave/
                 [49]  Verbitski A, Gupta A, Saha D, Brahmadesam M. Amazon Aurora: Design considerations for high throughput cloud-native relational
                     databases. In: Proc. of the 2017 ACM Int’l Conf. on Management of Data. Chicago: ACM, 2017. 1041–1052. [doi: 10.1145/3035918.
                     3056101]
                 [50]  Gifford DK. Weighted voting for replicated data. In: Proc. of the 7th ACM Symp. on Operating Systems Principles. Pacific Grove: ACM,
                     1979. 150–162. [doi: 10.1145/800215.806583]
                 [51]  Buffer space management. PolarDB. 2022 (in Chinese). https://apsaradb.github.io/PolarDB-for-PostgreSQL/zh/theory/buffer-management.
                     html#lazy-checkpoint
                 [52]  Haubenschild M, Sauer C, Neumann T, Leis V. Rethinking logging, checkpoints, and recovery for high-performance storage engines. In:

                     Proc. of the 2020 ACM SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020. 877–892. [doi: 10.1145/3318464.3389716]
                 [53]  Xia Y, Yu XY, Pavlo A, Devadas S. Taurus: Lightweight parallel logging for in-memory database management systems. Proc. of the
                     VLDB Endowment, 2021, 14(2): 189–201. [doi: 10.14778/3425879.3425889]
                 [54]  Jung H, Han H, Kang S. Scalable database logging for multicores. Proc. of the VLDB Endowment, 2017, 11(2): 135–148. [doi: 10.14778/
                     3149193.3149195]
                 [55]  He XL, Cai P, Zhou X, Zhou AY. Continuously bulk loading over range partitioned tables for large scale historical data. In: Proc. of the
                     37th IEEE Int’l Conf. on Data Engineering (ICDE). Chania: IEEE, 2021. 960–971. [doi: 10.1109/ICDE51399.2021.00088]
                 [56]  Kim J, Yu J, Ahn J, Kang S, Jung H. Diva: Making MVCC systems HTAP-friendly. In: Proc. of the 2022 Int’l Conf. on Management of
                     Data. Philadelphia: ACM, 2022. 49–64. [doi: 10.1145/3514221.3526135]
                 [57]  Sharma  A,  Schuhknecht  FM,  Dittrich  J.  Accelerating  analytical  processing  in  MVCC  using  fine-granular  high-frequency  virtual
                     snapshotting. In: Proc. of the 2018 Int’l Conf. on Management of Data. Houston: ACM, 2018. 245–258. [doi: 10.1145/3183713.3196904]
                 [58]  Saxena H, Golab L, Idreos S, Ilyas IF. Real-time LSM-trees for htap workloads. arXiv:2101.06801, 2021.
                 [59]  Dai YF, Xu YE, Ganesan A, Alagappan R, Kroth B, Arpaci-Dusseau AC, Arpaci-Dusseau RH. From wiscKey to bourbon: A learned
                     index for log-structured merge trees. In: Proc. of the 14th USENIX Conf. on Operating Systems Design and Implementation. Berkeley:
                     USENIX Association, 2020. 9.
                 [60]  Zhong WS, Chen C, Wu XB, Jiang S. REMIX: Efficient range query for LSM-trees. In: Proc. of the 19th USENIX Conf. on File and
                     Storage Technologies. USENIX Association, 2021. 51–64.
                 [61]  Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P. An asymptotically optimal multiversion B-tree. The VLDB Journal, 1996, 5(4):
                     264–275. [doi: 10.1007/s007780050028]
                 [62]  Lomet  D,  Salzberg  B.  The  performance  of  a  multiversion  access  method.  In:  Proc.  of  the  1990  ACM  SIGMOD  Int ’l  Conf.  on
                     Management of Data. Atlantic City: ACM, 1990. 353–363. [doi: 10.1145/93597.98744]
                 [63]  Gottstein  R,  Goyal  R,  Hardock  S,  Petrov  I,  Buchmann  A.  MV-IDX:  Indexing  in  multi-version  databases.  In:  Proc.  of  the  18th  Int ’l
                     Database Engineering & Applications Symp. Porto: ACM, 2014. 142–148. [doi: 10.1145/2628194.2628911]
                 [64]  Riegger C, Vinçon T, Gottstein R, Petrov I. MV-PBT: Multi-version indexing for large datasets and HTAP workloads. In: Proc. of the
                     23rd Int’l Conf. on Extending Database Technology. Copenhagen: OpenProceedings.org, 2020. 217–228.
                 [65]  Sun YH, Blelloch GE, Lim WS, Pavlo A. On supporting efficient snapshot isolation for hybrid workloads with multi-versioned indexes.
                     Proc. of the VLDB Endowment, 2019, 13(2): 211–225. [doi: 10.14778/3364324.3364334]
                 [66]  Lee J, Shin H, Park CG, Ko S, Noh J, Chuh Y, Stephan W, Han WS. Hybrid garbage collection for multi-version concurrency control in
                     SAP HANA. In: Proc. of the 2016 Int’l Conf. on Management of Data. San Francisco: ACM, 2016. 1307–1318. [doi: 10.1145/2882903.
                     2903734]
                 [67]  Kim J, Cho H, Kim K, Yu J, Kang S, Jung H. Long-lived transactions made less harmful. In: Proc. of the 2020 ACM SIGMOD Int’l
                     Conf. on Management of Data. Portland: ACM, 2020. 495–510. [doi: 10.1145/3318464.3389714]
                 [68]  Ritchie DM, Thompson K. The UNIX time-sharing system. The Bell System Technical Journal, 1978, 57(6): 1905–1929. [doi: 10.1002/j.
                     1538-7305.1978.tb02136.x]
                 [69]  Pavlo A, Butrovich M, Ma L, Menon P, Lim WS, Van Aken D, Zhang W. Make your database system dream of electric sheep: Towards
   391   392   393   394   395   396   397   398   399   400   401