Page 476 - 《软件学报》2024年第4期
P. 476
2054 软件学报 2024 年第 35 卷第 4 期
convolutions. In: Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 9030–9093.
[doi: 10.1109/cvpr46437.2021.00892]
[20] Sun X, Xiao B, Wei FY, Liang S, Wei YC. Integral human pose regression. In: Proc. of the 15th European Conf. on Computer Vision.
Munich: Springer, 2018. 536–553. [doi: 10.1007/978-3-030-01231-1_33]
[21] Li SC, Ke L, Pratama K, Tai YW, Tang CK, Cheng KT. Cascaded deep monocular 3D human pose estimation with evolutionary training
data. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 6172–6188. [doi: 10.1109/
cvpr42600.2020.00621]
[22] Horaud R, Hansard M, Evangelidis G, Menier C. An overview of depth cameras and range scanners based on time-of-flight technologies.
arXiv:2012.06772, 2020.
[23] Li X, Wang WH, Wu LJ, Chen S, Hu XL, Li J, Tang JH, Yang J. Generalized focal loss: Learning qualified and distributed bounding
boxes for dense object detection. In: Proc. of the 34th Int ’l Conf. on Neural Information Processing Systems. Vancouver: Curran
Associates Inc., 2020. 1763.
[24] Artacho B, Savakis A. UniPose: Unified human pose estimation in single images and videos. In: Proc. of the 2020 IEEE/CVF Conf. on
Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 7033–7042. [doi: 10.1109/cvpr42600.2020.00706]
[25] Sun K, Xiao B, Liu D, Wang JD. Deep high-resolution representation learning for human pose estimation. In: Proc. of the 2019
IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 5686–5796. [doi: 10.1109/cvpr.2019.00584]
[26] Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL. Microsoft COCO: Common objects in context. In:
Proc. of the 13th European Conf. on Computer Vision. Zurich: Springer, 2014. 740–755. [doi: 10.1007/978-3-319-10602-1_48]
[27] Mehta D, Sotnychenko O, Mueller F, Xu WP, Sridhar S, Pons-Moll G, Theobalt C. Single-shot multi-person 3D pose estimation from
monocular RGB. In: Proc. of the 2018 Int’l Conf. on 3D Vision. Verona: IEEE, 2018. 120–130. [doi: 10.1109/3dv.2018.00024]
[28] Ionescu C, Papava D, Olaru V, Sminchisescu C. Human3.6m: Large scale datasets and predictive methods for 3D human sensing in
natural environments. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1325–1339. [doi: 10.1109/tpami.2013.248]
[29] Su JJ, Wang CY, Ma XX, Zeng WJ, Wang YZ. VirtualPose: Learning generalizable 3D human pose models from virtual data. In: Proc. of
the 17th European Conf. on Computer Vision. Tel Aviv: Springer, 2022. 55–71. [doi: 10.1007/978-3-031-20068-7_4]
[30] Chen ZR, Huang Y, Yu HY, Xue B, Han K, Guo YR, Wang L. Towards part-aware monocular 3D human pose estimation: An
architecture search approach. In: Proc. of the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 715–732. [doi: 10.1007/
978-3-030-58580-8_42]
[31] Li JF, Bian SY, Zeng AL, Wang C, Pang B, Liu WT, Li C. Human pose regression with residual log-likelihood estimation. In: Proc. of
the 2021 IEEE/CVF Int’l Conf. on Computer Vision. Montreal: IEEE, 2021. 11005–11014. [doi: 10.1109/iccv48922.2021.01084]
[32] Zheng XT, Chen XM, Lu XQ. A joint relationship aware neural network for single-image 3D human pose estimation. IEEE Trans. on
Image Processing, 2020, 29: 4747–4758. [doi: 10.1109/tip.2020.2972104]
[33] Xia HL, Zhang TT. Self-attention network for human pose estimation. Applied Sciences, 2021, 11(4): 1826. [doi: 10.3390/app11041826]
附中文参考文献:
[1] 杨彬, 李和平, 曾慧. 基于视频的三维人体姿态估计. 北京航空航天大学学报, 2019, 45(12): 2463–2469. [doi: 10.13700/j.bh.1001-5965.
2019.0384]
何建航(1996-), 男, 硕士生, 主要研究领域为 2D 刘琼(1959-), 女, 博士, 教授, 博士生导师, 主要
和 3D 人体姿态估计. 研究领域为机器学习, 深度学习视觉应用技术.
孙郡瑤(1997-), 女, 博士生, 主要研究领域为密
集人体姿态估计.