Page 476 - 《软件学报》2024年第4期
P. 476

2054                                                       软件学报  2024  年第  35  卷第  4  期


                     convolutions. In: Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 9030–9093.
                     [doi: 10.1109/cvpr46437.2021.00892]
                 [20]  Sun X, Xiao B, Wei FY, Liang S, Wei YC. Integral human pose regression. In: Proc. of the 15th European Conf. on Computer Vision.
                     Munich: Springer, 2018. 536–553. [doi: 10.1007/978-3-030-01231-1_33]
                 [21]  Li SC, Ke L, Pratama K, Tai YW, Tang CK, Cheng KT. Cascaded deep monocular 3D human pose estimation with evolutionary training
                     data. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 6172–6188. [doi: 10.1109/
                     cvpr42600.2020.00621]
                 [22]  Horaud R, Hansard M, Evangelidis G, Menier C. An overview of depth cameras and range scanners based on time-of-flight technologies.
                     arXiv:2012.06772, 2020.
                 [23]  Li X, Wang WH, Wu LJ, Chen S, Hu XL, Li J, Tang JH, Yang J. Generalized focal loss: Learning qualified and distributed bounding
                     boxes  for  dense  object  detection.  In:  Proc.  of  the  34th  Int ’l  Conf.  on  Neural  Information  Processing  Systems.  Vancouver:  Curran
                     Associates Inc., 2020. 1763.
                 [24]  Artacho B, Savakis A. UniPose: Unified human pose estimation in single images and videos. In: Proc. of the 2020 IEEE/CVF Conf. on
                     Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 7033–7042. [doi: 10.1109/cvpr42600.2020.00706]
                 [25]  Sun  K,  Xiao  B,  Liu  D,  Wang  JD.  Deep  high-resolution  representation  learning  for  human  pose  estimation.  In:  Proc.  of  the  2019
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 5686–5796. [doi: 10.1109/cvpr.2019.00584]
                 [26]  Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL. Microsoft COCO: Common objects in context. In:
                     Proc. of the 13th European Conf. on Computer Vision. Zurich: Springer, 2014. 740–755. [doi: 10.1007/978-3-319-10602-1_48]
                 [27]  Mehta D, Sotnychenko O, Mueller F, Xu WP, Sridhar S, Pons-Moll G, Theobalt C. Single-shot multi-person 3D pose estimation from
                     monocular RGB. In: Proc. of the 2018 Int’l Conf. on 3D Vision. Verona: IEEE, 2018. 120–130. [doi: 10.1109/3dv.2018.00024]
                 [28]  Ionescu C, Papava D, Olaru V, Sminchisescu C. Human3.6m: Large scale datasets and predictive methods for 3D human sensing in
                     natural environments. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1325–1339. [doi: 10.1109/tpami.2013.248]
                 [29]  Su JJ, Wang CY, Ma XX, Zeng WJ, Wang YZ. VirtualPose: Learning generalizable 3D human pose models from virtual data. In: Proc. of
                     the 17th European Conf. on Computer Vision. Tel Aviv: Springer, 2022. 55–71. [doi: 10.1007/978-3-031-20068-7_4]
                 [30]  Chen  ZR,  Huang  Y,  Yu  HY,  Xue  B,  Han  K,  Guo  YR,  Wang  L.  Towards  part-aware  monocular  3D  human  pose  estimation:  An
                     architecture search approach. In: Proc. of the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 715–732. [doi: 10.1007/
                     978-3-030-58580-8_42]
                 [31]  Li JF, Bian SY, Zeng AL, Wang C, Pang B, Liu WT, Li C. Human pose regression with residual log-likelihood estimation. In: Proc. of
                     the 2021 IEEE/CVF Int’l Conf. on Computer Vision. Montreal: IEEE, 2021. 11005–11014. [doi: 10.1109/iccv48922.2021.01084]
                 [32]  Zheng XT, Chen XM, Lu XQ. A joint relationship aware neural network for single-image 3D human pose estimation. IEEE Trans. on
                     Image Processing, 2020, 29: 4747–4758. [doi: 10.1109/tip.2020.2972104]
                 [33]  Xia HL, Zhang TT. Self-attention network for human pose estimation. Applied Sciences, 2021, 11(4): 1826. [doi: 10.3390/app11041826]

                 附中文参考文献:
                 [1]  杨彬, 李和平, 曾慧. 基于视频的三维人体姿态估计. 北京航空航天大学学报, 2019, 45(12): 2463–2469. [doi: 10.13700/j.bh.1001-5965.
                    2019.0384]


                             何建航(1996-), 男, 硕士生, 主要研究领域为  2D              刘琼(1959-), 女, 博士, 教授, 博士生导师, 主要
                            和  3D  人体姿态估计.                               研究领域为机器学习, 深度学习视觉应用技术.







                             孙郡瑤(1997-), 女, 博士生, 主要研究领域为密
                            集人体姿态估计.
   471   472   473   474   475   476   477   478   479   480   481