Page 401 - 《软件学报》2024年第4期
P. 401
蒋璐宇 等: 针对 MUS 求解问题的加强剪枝策略 1979
[25] Gao H. Diagram and tree structure-based MUS solution [MS. Thesis]. Changchun: Jilin University, 2020 (in Chinese with English
abstract). [doi: 10.27162/d.cnki.gjlin.2020.004377]
[26] Bendik J, Benes N, Cerna I, Barnat J. Tunable online MUS/MSS enumeration. In: Proc. of the 36th IARCS Annual Conf. on Foundations
of Software Technology and Theoretical Computer Science. Chennai: FSTTCS, 2016. 50: 1–50: 13. [doi: 10.4230/LIPIcs.FSTTCS.2016.
50]
[27] Bendík J, Černá I, Beneš N. Recursive online enumeration of all minimal unsatisfiable subsets. In: Proc. of the 16th Int’l Symp. on
Automated Technology for Verification and Analysis. Los Angeles: Springer, 2018. 143–159. [doi: 10.1007/978-3-030-01090-4_9]
[28] Luo J, Liu SF. Accelerating MUS enumeration by inconsistency graph partitioning. Science China Information Sciences, 2019, 62(11):
212104. [doi: 10.1007/s11432-019-9881-0]
[29] Bendík J, Černá I. Replication-guided enumeration of minimal unsatisfiable subsets. In: Proc. of the 26th Int’l Conf. on Principles and
Practice of Constraint Programming. Louvain-la-Neuve: Springer, 2020. 37–54. [doi: 10.1007/978-3-030-58475-7_3]
[30] Narodytska N, Bjørner N, Marinescu MC, Sagiv M. Core-guided minimal correction set and core enumeration. In: Proc. of the 27th Int’l
Joint Conf. on Artificial Intelligence. Stockholm: AAAI Press, 2018. 1353–1361.
[31] Bacchus F, Katsirelos G. Finding a collection of MUSes incrementally. In: Proc. of the 13th Int’l Conf. on Integration of AI and OR
Techniques in Constraint Programming. Banff: Springer, 2016. 35–44. [doi: 10.1007/978-3-319-33954-2_3]
[32] Bendík J, Černá I. MUST: Minimal unsatisfiable subsets enumeration tool. In: Proc. of the 26th Int’l Conf. on Tools and Algorithms for
the Construction and Analysis of Systems. Dublin: Springer, 2020. 135–152. [doi: 10.1007/978-3-030-45190-5_8]
[33] Eén N, Sörensson N. An extensible SAT-solver. In: Proc. of the 6th Int’l Conf. on Theory and Applications of Satisfiability Testing. Santa
Margherita Ligure: Springer, 2004. 502–518. [doi: 10.1007/978-3-540-24605-3_37]
[34] MUS track of the 2011 sat competition. 2022. http://www.cril.univ-artois.fr/SAT11/
附中文参考文献:
[4] 田乃予, 欧阳丹彤, 刘梦, 张立明. 基于子集一致性检测的诊断解极小性判定方法. 计算机研究与发展, 2019, 56(7): 1396–1407. [doi:
10.7544/issn1000-1239.2019.20180192]
[24] 欧阳丹彤, 高菡, 田乃予, 刘梦, 张立明. 基于双模型的MUS求解方法. 计算机研究与发展, 2019, 56(12): 2623–2631. [doi: 10.7544/
issn1000-1239.2019.20180852]
[25] 高菡. 基于图及树结构的极小不可满足集求解方法 [硕士学位论文]. 长春: 吉林大学, 2020. [doi: 10.27162/d.cnki.gjlin.2020.004377]
蒋璐宇(1998-), 女, 博士生, 主要研究领域为 SAT 董博文(1998-), 男, 硕士, 主要研究领域为 SAT
问题, MUS 问题. 问题, MUS 问题.
欧阳丹彤(1968-), 女, 博士, 教授, 博士生导师, 张立明(1980-), 男, 博士, CCF 高级会员, 主要
CCF 高级会员, 主要研究领域为自动推理, 基于 研究领域为 SAT 问题, 基于模型的诊断.
模型的诊断.