Page 38 - 《软件学报》2024年第4期
P. 38

1616                                                       软件学报  2024 年第 35 卷第 4 期

         [26]    Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-training. OpenAI, 2018.
         [27]    Lewis M, Liu Y, Goyal N, et al. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation,
             and comprehension. arXiv:1910.13461, 2019.
         [28]    Ahmad WU, Chakraborty S, Ray B, et al. Unified pre-training for program understanding and generation. arXiv:2103.06333, 2021.
         [29]    Feng Z, Guo D, Tang D, et al. CodeBERT: A pre-trained model for programming and natural languages. arXiv:2002.08155, 2020.
         [30]    Guo D, Ren S, Lu S, et al. GraphCodeBERT: Pre-training code representations with data flow. arXiv:2009.08366, 2020.
         [31]    Wang  X, Wang Y, Mi F,  et al. SynCoBERT: Syntax-guided multi-modal  contrastive pretraining for  code representation.  arXiv:
             2108.04556, 2021.
         [32]    Guo D, Lu S, Duan N, et al. UniXcoder: Unified cross-modal pre-training for code representation. arXiv:2203. 03850, 2022.
         [33]    Husain  H,  Wu HH, Gazit T,  et al. CodeSearchNet  challenge:  Evaluating  the state of semantic  code search .  arXiv:1909.09436,
             2019.
         [34]    Svajlenko J, Islam JF, Keivanloo I, et al. Towards a big data curated benchmark of inter-project code clones. In: Proc. of the 2014
             IEEE Int’l Conf. on Software Maintenance and Evolution. IEEE, 2014. 476−480.
         [35]    Mou L, Li G, Zhang L, et al. Convolutional neural networks over tree structures for programming language processing. In: Proc. of
             the 30th AAAI Conf. on Artificial Intelligence (AAAI-16). 2016.
         [36]    Lü TG, Hong RC, He  J,  et al. Multimodal-guided local feature  selection  for few-shot learning. Ruan  Jian Xue Bao/Journal  of
             Software, 2023, 34(5): 2068−2082 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6771.htm [doi: 10.13328/j.
             cnki.jos.006771]
         [37]    Gu X, Zhang H, Kim S. Deep code search. In: Proc. of the 40th Int’l Conf. on Software Engineering. 2018.
         [38]    Yang G, Chen X, Cao  J,  et  al. Comformer: Code comment  generation  via transformer and  fusion method-based hybrid  code
             representation. In: Proc. of the 8th Int’l Conf. on Dependable Systems and Their Applications (DSA). 2021.
         [39]    Liu B, Li RL, Feng JF. A brief introduction to deep metric learning. CAAI Trans. on in Telligent Systems, 2019, 14(6): 1064−1072
             (in Chinese with English abstract).
         [40]    Gao T, Yao X, Chen D. SimCSE: Simple contrastive learning of sentence embeddings. arXiv:2104.08821, 2021.
         [41]    Bui ND,  Yu Y, Jiang  L. Self-supervised  contrastive  learning for  code retrieval  and summarization via semantic-preserving
             transformations.  In: Proc. of the  44th  Int’l  ACM SIGIR  Conf.  on Research  and Development in Information Retrieval.  2021.
             511−521.
         [42]    Chen Q, Lacomis J, Schwartz EJ, et al. VarCLR: Variable semantic representation pre-training via contrastive learning. In: Proc. of
             the 44th Int’l Conf. on Software Engineering. 2022. 2327−2339.
         [43]    Neelakantan A, Xu T, Puri R, et al. Text and code embeddings by contrastive pre-training. arXiv:2201.10005, 2022.
         [44]    Jain P, Jain A, Zhang T, et al. Contrastive code representation learning. arXiv:2007.04973, 2020.
         [45]    Du L, Shi X, Wang Y,  et al.  Is a  single model enough?  MuCoS: A multi-model  ensemble learning for semantic  code search.
             arXiv:2107.04773, 2021.
         [46]    Rabin MR, Bui ND, Wang K, et al. On the generalizability of neural program models with respect to semantic-preserving program
             transformations. Information and Software Technology, 2021, 135: 106552.
         [47]    Wei M, Zhang LP. Research progress of code search methods. Application Research of Computers, 2021, 38(11): 3215−3221, 3230
             (in Chinese with English abstract). [doi: 10.19734/j.issn.1001-3695.2021.04.0096]
         [48]    Cho K, Van  Merriënboer B, Bahdanau D,  et al. On the  properties  of neural machine  translation: Encoder-decoder approaches.
             arXiv:1409.1259, 2014.

         附中文参考文献:
           [3]  成思强,  刘建勋,  彭珍连,  等.  以 CodeBERT 为基础的代码分类研究.  计算机工程与应用, 2023,  59(24): 277−288. [doi:
             10.3778/j.issn.1002-8331.2209-0402].
           [7]  周志华,  陈世福.  神经网络集成.  计算机学报, 2002, 25(1): 1−8.
         [16]  王霞,  梁瑶,  谢春丽.  深度学习在代码表征中的应用综述.  计算机工程与应用,  2021,  57(20):  53−63. [doi:  10.3778/j.issn.1002-
             8331.2106-0368]
         [36]  吕天根,  洪日昌,  何军,  等.  多模态引导的局部特征选择小样本学习方法.  软件学报,  2023,  34(5):  2068−2082.  http://www.jos.
             org.cn/1000-9825/6771.htm [doi: 10.13328/j.cnki.jos.006771]
         [39]  刘冰,  李瑞麟,  封举富.  深度度量学习综述.  智能系统学报, 2019, 14(6): 1064−1072.
   33   34   35   36   37   38   39   40   41   42   43