Page 22 - 《软件学报》2024年第4期
P. 22

1600                                                       软件学报  2024 年第 35 卷第 4 期

         [32]    Faramarzi M, Amini M, Badrinaaraayanan A, et al. Patchup: A regularization technique for convolutional neural networks. Proc. of
             the AAAI Conf. on Artificial Intelligence, 2022, 36(1): 589−597.
         [33]    Mai  Z,  Hu G, Chen D,  et  al.  MetaMixUp:  Learning  adaptive interpolation policy of  mixup  with  metalearning. IEEE  Trans.  on
             Neural Networks and Learning Systems, 2021, 33(7): 3050−3064.
         [34]    Guo H, Mao Y, Zhang R. Mixup as locally linear out-of-manifold regularization. Proc. of the AAAI Conf. on Artificial Intelligence,
             2019, 33(1): 3714−3722.
         [35]    Shu Y, Cao Z, Wang C, et al. Open domain generalization with domain-augmented meta-learning. In: Proc. of the IEEE/CVF Conf.
             on Computer Vision and Pattern Recognition. 2021. 9624−9633.
         [36]    Long M, Wang J, Ding G, et al. Transfer feature learning with joint distribution adaptation. In: Proc. of the IEEE Int’l Conf. on
             Computer Vision. 2013. 2200−2207.
         [37]    Li H, Pan SJ, Wang S, et al. Domain generalization with adversarial feature learning. In: Proc. of the IEEE Conf. on Computer
             Vision and Pattern Recognition. 2018. 5400−5409.
         [38]    Zhang L, Deng Z, Kawaguchi K, et al. How does mixup help with robustness and generalization? arXiv:2010.04819, 2020.
         [39]    Liu J, Chao F, Lin CM. Task augmentation by rotating for meta-learning. arXiv:2003.00804, 2020.
         [40]    Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning. In: Advances in Neural Information Processing
             Systems. 2016. 29.
         [41]    Milton  MAA.  Automated skin lesion  classification using  ensemble of deep neural networks in  isic  2018: Skin lesion  analysis
             towards melanoma detection challenge. arXiv:1901.10802, 2019.
         [42]    Cao K, Brbic M, Leskovec J. Concept learners for few-shot learning. arXiv:2007.07375, 2020.



                       刘鑫(1994-),  女,  博士生,  CCF 学生会                于剑(1969-),  男,  博士,  教授,  博士生
                       员,  主要研究领域为机器学习,  小样本                        导师,  CCF 会士,  主要研究领域为机器学
                       学习.                                          习理论,  自然语言处理.



                       景丽萍(1978-),  女,  博士,  教授,  博士
                       生导师,  CCF 高级会员,  主要研究领域为
                       机器学习,  高维数据表示及其在人工智
                       能领域中的应用.
   17   18   19   20   21   22   23   24   25   26   27