Page 22 - 《软件学报》2024年第4期
P. 22
1600 软件学报 2024 年第 35 卷第 4 期
[32] Faramarzi M, Amini M, Badrinaaraayanan A, et al. Patchup: A regularization technique for convolutional neural networks. Proc. of
the AAAI Conf. on Artificial Intelligence, 2022, 36(1): 589−597.
[33] Mai Z, Hu G, Chen D, et al. MetaMixUp: Learning adaptive interpolation policy of mixup with metalearning. IEEE Trans. on
Neural Networks and Learning Systems, 2021, 33(7): 3050−3064.
[34] Guo H, Mao Y, Zhang R. Mixup as locally linear out-of-manifold regularization. Proc. of the AAAI Conf. on Artificial Intelligence,
2019, 33(1): 3714−3722.
[35] Shu Y, Cao Z, Wang C, et al. Open domain generalization with domain-augmented meta-learning. In: Proc. of the IEEE/CVF Conf.
on Computer Vision and Pattern Recognition. 2021. 9624−9633.
[36] Long M, Wang J, Ding G, et al. Transfer feature learning with joint distribution adaptation. In: Proc. of the IEEE Int’l Conf. on
Computer Vision. 2013. 2200−2207.
[37] Li H, Pan SJ, Wang S, et al. Domain generalization with adversarial feature learning. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition. 2018. 5400−5409.
[38] Zhang L, Deng Z, Kawaguchi K, et al. How does mixup help with robustness and generalization? arXiv:2010.04819, 2020.
[39] Liu J, Chao F, Lin CM. Task augmentation by rotating for meta-learning. arXiv:2003.00804, 2020.
[40] Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning. In: Advances in Neural Information Processing
Systems. 2016. 29.
[41] Milton MAA. Automated skin lesion classification using ensemble of deep neural networks in isic 2018: Skin lesion analysis
towards melanoma detection challenge. arXiv:1901.10802, 2019.
[42] Cao K, Brbic M, Leskovec J. Concept learners for few-shot learning. arXiv:2007.07375, 2020.
刘鑫(1994-), 女, 博士生, CCF 学生会 于剑(1969-), 男, 博士, 教授, 博士生
员, 主要研究领域为机器学习, 小样本 导师, CCF 会士, 主要研究领域为机器学
学习. 习理论, 自然语言处理.
景丽萍(1978-), 女, 博士, 教授, 博士
生导师, CCF 高级会员, 主要研究领域为
机器学习, 高维数据表示及其在人工智
能领域中的应用.