Page 194 - 《软件学报》2024年第4期
P. 194
1772 软件学报 2024 年第 35 卷第 4 期
[23] Otter DW, Medina JR, Kalita JK. A survey of the usages of deep learning for natural language processing. IEEE Trans. on Neural
Networks and Learning Systems, 2020, 32(2): 604−624.
[24] Zhang J, Zheng Y, Qi D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Proc. of the 31th AAAI
Conf. on Artificial Intelligence. 2017. 1655−1661.
[25] Zheng Z, Yang Y, Liu J, et al. Deep and embedded learning approach for traffic flow prediction in urban informatics. IEEE Trans.
on Intelligent Transportation Systems, 2019, 20(10): 3927−3939.
[26] Liu X, Zhao Z, Zhang Y, et al. Social network rumor detection method combining dual-attention mechanism with graph
convolutional network. IEEE Trans. on Computational Social Systems, 2022, 1−12.
[27] Chen L, Tang X, Chen W, et al. A dual graph convolution based temporal knowledge graph representation learning method using
historical relation. ACM Trans. on Knowledge Discovery from Data, 2021, 16(3): 1−18.
[28] Shen Y, Wu Y, Zhang Y, et al. How powerful is graph convolution for recommendation? In: Proc. of the 30th ACM Int’l Conf. on
Information & Knowledge Management. 2021. 1619−1629.
[29] Li Y, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv:1707.01926,
2017.
[30] Guo S, Lin Y, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proc. of
the 33th AAAI Conf. on Artificial Intelligence. 2019. 922−929.
[31] Zheng C, Fan X, Wang C, et al. Gman: A graph multi-attention network for traffic prediction. In: Proc. of the 33th AAAI Conf. on
Artificial Intelligence. 2020. 1234−1241.
[32] Guo S, Lin Y, Wan H, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans.
on Knowledge and Data Engineering, 2021, 34(11): 5415−5428.
[33] Wu Z, Pan S, Long G, et al. Graph wavenet for deep spatial-temporal graph modeling. arXiv:1906.00121, 2019
[34] Bai L, Yao L, Li C, et al. Adaptive graph convolutional recurrent network for traffic forecasting. In: Advances in Neural
Information Processing Systems, Vol.33. 2020. 17804−17815.
[35] Fang Z, Long Q, Song G, et al. Spatial-temporal graph ode networks for traffic flow forecasting. In: Proc. of the 27th ACM
SIGKDD Conf. on Knowledge Discovery & Data Mining. 2021. 364−373.
[36] Shuman DI, Narang SK, Frossard P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 2013, 30(3): 83−98.
[37] Berndt DJ, Clifford J. Using dynamic time warping to find patterns in time series. In: Proc. of the 3rd Int’l Conf. on Knowledge
Discovery and Data Mining. 1994. 359−370.
[38] Salvador S, Chan P. Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis, 2007, 11(5):
561−580.
[39] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proc. of the 31st Int’l Conf. on Neural Information Processing
Systems. 2017. 6000−6010.
[40] Chen C, Petty K, Skabardonis A, et al. Freeway performance measurement system: mining loop detector data. Transportation
Research Record, 2001, 1748(1): 96−102.
[41] Sun TY. Research on urban traffic flow forecasting based on vector autoregression [MS. Thesis]. Beijing: Beijing Jiaotong
University, 2022 (in Chinese with English abstract).
[42] Fang W, Zhuo W, Song Y, et al. Δ free-LSTM: An error distribution free deep learning for short-term traffic flow forecasting.
Neurocomputing, 2023, 526: 180−190.
[43] Wang X, Ma Y, Wang Y, et al. Traffic flow prediction via spatial temporal graph neural network. In: Proc. of the Web Conf. 2020.
New York: Association for Computing Machinery, 2020. 1082−1092.
附中文参考文献:
[9] 冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络. 软件学报, 2019, 30(3): 759−769. http://www.jos.org.
cn/1000-9825/5697.htm [doi: 10.13328/j.cnki.jos.005697]
[41] 孙天瑀. 基于向量自回归的城市交通流量预测算法研究[硕士学位论文]. 北京: 北京交通大学, 2022.