Page 194 - 《软件学报》2024年第4期
P. 194

1772                                                       软件学报  2024 年第 35 卷第 4 期

         [23]    Otter DW, Medina JR, Kalita JK. A survey of the usages of deep learning for natural language processing. IEEE Trans. on Neural
             Networks and Learning Systems, 2020, 32(2): 604−624.
         [24]    Zhang J, Zheng Y, Qi D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Proc. of the 31th AAAI
             Conf. on Artificial Intelligence. 2017. 1655−1661.
         [25]    Zheng Z, Yang Y, Liu J, et al. Deep and embedded learning approach for traffic flow prediction in urban informatics. IEEE Trans.
             on Intelligent Transportation Systems, 2019, 20(10): 3927−3939.
         [26]    Liu X, Zhao Z, Zhang Y,  et al. Social  network rumor detection  method  combining dual-attention mechanism with graph
             convolutional network. IEEE Trans. on Computational Social Systems, 2022, 1−12.
         [27]    Chen L, Tang X, Chen W, et al. A dual graph convolution based temporal knowledge graph representation learning method using
             historical relation. ACM Trans. on Knowledge Discovery from Data, 2021, 16(3): 1−18.
         [28]    Shen Y, Wu Y, Zhang Y, et al. How powerful is graph convolution for recommendation? In: Proc. of the 30th ACM Int’l Conf. on
             Information & Knowledge Management. 2021. 1619−1629.
         [29]    Li Y, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv:1707.01926,
             2017.
         [30]    Guo S, Lin Y, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proc. of
             the 33th AAAI Conf. on Artificial Intelligence. 2019. 922−929.
         [31]    Zheng C, Fan X, Wang C, et al. Gman: A graph multi-attention network for traffic prediction. In: Proc. of the 33th AAAI Conf. on
             Artificial Intelligence. 2020. 1234−1241.
         [32]    Guo S, Lin Y, Wan H, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans.
             on Knowledge and Data Engineering, 2021, 34(11): 5415−5428.
         [33]    Wu Z, Pan S, Long G, et al. Graph wavenet for deep spatial-temporal graph modeling. arXiv:1906.00121, 2019
         [34]    Bai L, Yao  L,  Li C,  et al. Adaptive graph  convolutional recurrent network for traffic  forecasting.  In:  Advances in  Neural
             Information Processing Systems, Vol.33. 2020. 17804−17815.
         [35]    Fang Z, Long Q,  Song G,  et al. Spatial-temporal  graph ode networks for  traffic flow  forecasting.  In: Proc.  of the  27th ACM
             SIGKDD Conf. on Knowledge Discovery & Data Mining. 2021. 364−373.
         [36]    Shuman DI, Narang SK, Frossard P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data
             analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 2013, 30(3): 83−98.
         [37]    Berndt DJ, Clifford J. Using dynamic time warping to find patterns in time series. In: Proc. of the 3rd Int’l Conf. on Knowledge
             Discovery and Data Mining. 1994. 359−370.
         [38]    Salvador  S, Chan P. Toward accurate dynamic time  warping in linear time  and space. Intelligent Data  Analysis,  2007,  11(5):
             561−580.
         [39]    Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proc. of the 31st Int’l Conf. on Neural Information Processing
             Systems. 2017. 6000−6010.
         [40]    Chen C,  Petty K, Skabardonis A,  et al. Freeway performance  measurement system:  mining loop detector data.  Transportation
             Research Record, 2001, 1748(1): 96−102.
         [41]    Sun TY.  Research on  urban  traffic  flow forecasting based on vector  autoregression  [MS. Thesis].  Beijing:  Beijing Jiaotong
             University, 2022 (in Chinese with English abstract).
         [42]    Fang W, Zhuo W,  Song Y,  et al.  Δ free-LSTM: An  error distribution free  deep learning for  short-term  traffic flow forecasting.
             Neurocomputing, 2023, 526: 180−190.
         [43]    Wang X, Ma Y, Wang Y, et al. Traffic flow prediction via spatial temporal graph neural network. In: Proc. of the Web Conf. 2020.
             New York: Association for Computing Machinery, 2020. 1082−1092.

         附中文参考文献:
           [9]  冯宁,  郭晟楠,  宋超,  等.  面向交通流量预测的多组件时空图卷积网络.  软件学报,  2019,  30(3):  759−769.  http://www.jos.org.
             cn/1000-9825/5697.htm [doi: 10.13328/j.cnki.jos.005697]
         [41]  孙天瑀.  基于向量自回归的城市交通流量预测算法研究[硕士学位论文].  北京:  北京交通大学, 2022.
   189   190   191   192   193   194   195   196   197   198   199