Page 151 - 《软件学报》2024年第4期
P. 151

闫涛  等:  一种分组并行的轻量化实时微观三维形貌重建方法                                                   1729


                             表 7    GPLWS-Net 与其他网络在不同分辨率下的延时对比
                                   描述
                   测试数据集                         模型       时间(s)   降低百分比↓(%)       CPU
                              焦点堆栈     分辨率
                                                    [5]
                                                FVNet      3.100     15.56
                                                     [5]
                                                DFVNet     3.020     13.34
                                                    [6]
                                                DDFF       4.491     41.73
                   DefocusNet    5    256×256         [7]
                                               DefocusNet    5.906   55.69
                                                      [8]
                                              AiFDepthNet    4.405   40.60
                                               GPLWS-Net   2.617      −
                                                FVNet     14.330     33.71
                                                    [5]
                                                     [5]
                                                DFVNet    13.850     31.42
                                                    [6]
                                                DDFF      23.489     59.57
                  4D Light Field   10   512×512   DefocusNet    18.624   46.59
                                                      [7]
                                                      [8]
                                              AiFDepthNet    11.987   20.77
                                               GPLWS-Net   9.498      −       Intel(R) Xeon(R)
                                                    [5]
                                                FVNet     42.614     28.56    Silver 4210 CPU
                                                     [5]
                                                DFVNet    42.776     28.83
                                                    [6]
                                                DDFF      79.165     61.55
                 FlyingThings3D   15   540×960   DefocusNet    70.076   56.57
                                                      [7]
                                                      [8]
                                              AiFDepthNet    64.441   52.77
                                               GPLWS-Net   30.440     −
                                                    [5]
                                                FVNet     39.580     55.02
                                                     [5]
                                                DFVNet    36.980     51.87
                                                    [6]
                                                DDFF      38.780     54.11
                   Micro 3D     10    600×800         [7]
                                               DefocusNet    34.328   48.15
                                                      [8]
                                              AiFDepthNet    31.567   43.62
                                               GPLWS-Net   17.800     −
         4    总   结
             微观三维形貌重建作为微纳级显微设备的核心技术,  可对精密制造领域的数据建模、产品加工以及质量
         控制的全链条环节提供保障.  而现有的三维形貌重建方法无法应对微观场景中的高分辨率稠密数据的处理,
         给实时微观三维形貌重建带来挑战.  本文从多聚焦图像序列特有的聚焦曲线连续性特点出发,  分割一维时序
         景深数据进行多分支并行,  通过网络结构的重参数化保障重建精度,  可有效兼顾网络的效率与精度,  为微观
         三维形貌重建方法的多场景部署应用提供解决思路.  除此之外,  本文公开的微观三维形貌数据集 Micro 3D 可
         有效缓解现阶段微观领域数据集缺失的问题,  为设计高效的深度网络提供数据基础.  未来研究主要从标签数
         据的自动标注和微观三维重建大模型的设计方面展开.
         References:
          [1]    Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.
             Science, 2008, 319(5864): 810−813.
          [2]    Nayar S, Nakagawa Y. Shape from focus. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1994, 16(8): 824−831.
          [3]    Yan T, Qian YH, Li FJ, et al. Intelligent microscopic 3D shape reconstruction method based on 3D time-frequency transformation.
             Sci Sin Inform, 2023, 53: 282−308 (in Chinese with English abstract). [doi: 10.1360/SSI-2021-0386]
          [4]    Zhang JF, Yan T, Wang KQ, et al. 3D shape reconstruction from multi depth of filed images: datasets and models. Chinese Journal
             of Computers, 2023, 46(8): 1734−1752 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2023.01734]
          [5]    Yang F, Huang X, Zhou Z. Deep depth from focus with differential focus volume. In: Proc. of the IEEE/CVF Conf. on Computer
             Vision and Pattern Recognition. 2022. 12642−12651.
          [6]    Hazirbas C, Soyer SG, Staab MC, et al. Deep depth from focus. In: Proc. of the Asian Conf. on Computer Vision. 2018. 525−541.
          [7]    Maximov M, Galim K, Leal-Taixé L. Focus on defocus: bridging the synthetic to real domain gap for depth estimation. In: Proc. of
             the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2020. 1071−1080.
          [8]    Wang NH, Wang R, Liu YL, et al. Bridging unsupervised and supervised depth from focus via all-in-focus supervision. In: Proc. of
             the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2021. 12621−12631.
   146   147   148   149   150   151   152   153   154   155   156