Page 137 - 《软件学报》2024年第4期
P. 137
田青 等: 基于自适应权重的多源部分域适应 1715
[13] Zhao H, Zhang SH, Wu GH, et al. Adversarial multiple source domain adaptation. In: Advances in Neural Information Processing
System 31. 2018. 8568−8579.
[14] Zhu Y, Zhuang F, Wang D. Aligning domain-specific distribution and classifier for cross-domain classification from multiple
sources. In: Proc. of the 2019 AAAI Conf. on Artificial Intelligence. 2019. 5989−5996.
[15] Zhang J, Zhou WE, Chen XQ, et al. Multisource selective transfer framework in multiobjective optimization problems. IEEE Trans.
on Evolutionary Computation, 2019, 24(3): 424−438.
[16] Zhao SC, Li B, Xu PF, et al. Madan: Multi-source adversarial domain aggregation network for domain adaptation. Int’l Journal of
Computer Vision, 2021, 129(8): 2399−2424.
[17] Duan LX, Tsang IW, Xu D. Domain transfer multiple kernel learning. IEEE Trans. on Pattern Analysis and Machine Intelligence,
2012, 34(3): 465−479.
[18] Gretton A, Borgwardt KM, Rasch MJ, et al. A kernel two-sample test. Machine Learning Research, 2012, 13(1): 723−773.
[19] Dorri F, Ghodsi A. Adapting component analysis. In: Proc. of the 12th IEEE Int ’l Conf. on Data Mining. Brussels: IEEE, 2012.
846−851.
[20] Zhang K, Schölkopf B, Muandet K, et al. Domain adaptation under target and conditional shift. In: Proc. of the 30th Int’l Conf. on
Machine Learning. 2013. 819−827.
[21] Gong MM, Zhang K, Liu TL, et al. Domain adaptation with conditional transferable components. In: Proc. of the 33rd Int’l Conf.
on Machine Learning. 2016. 2839−2848.
[22] Cao K, Tu ZP, Ming Y. Class conditional distribution alignment for domain adaptation. Control Theory and Technology, 2020,
18(1): 72−80.
[23] Pan SJ, Tsang IW, Kwok JT, et al. Domain adaptation via transfer component analysis. IEEE Trans. on Neural Networks, 2011,
22(2): 199−210.
[24] Tzeng E, Hoffman J, Zhang N, et al. Deep domain confusion: Maximizing for domain invariance. arXiv:1412.3474, 2014.
[25] Long MS, Zhu H, Wang JM, et al. Deep transfer learning with joint adaptation networks. In: Proc. of the 34th Int’l Conf. on
Machine Learning. arXiv:1605.06636, 2017.
[26] Yu CH, Wang JD, Chen YQ, et al. Transfer learning with dynamic adversarial adaptation network. In: Proc. of the 2019 IEEE Int’l
Conf. on Data Mining. Beijing: IEEE, 2019. 778−786.
[27] Ganin Y, Lempitsky V. Unsupervised domain adaptation by backpropagation. In: Proc.of the 32nd Int’l Conf. on Machine Learning.
arXiv:1409.7495, 2015.
[28] Saenko K, Kulis B, Fritz M, et al. Adapting visual category models to new domains. In: Proc. of the 11th European Conf. on
Computer Vision. Heraklion: Springer, 2010. 213−226.
[29] Venkateswara H, Eusebio J, Chakraborty S, et al. Deep hashing network for unsupervised domain adaptation. In: Proc. of the 2017
IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5385−5394.
[30] Sun B, Feng J, Saenko K. Return of frustratingly easy domain adaptation. In: Proc. of the 2016 AAAI Conf. on Artificial
Intelligence. arXiv:1511.05547, 2015.
[31] Saito K, Watanabe K, Ushiku Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proc. of the 2018
IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 3723−3732.
[32] Wang H, Xu MH, Ni BB, et al. Learning to combine: Knowledge aggregation for multi-source domain adaptation. In: Proc. of the
16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 727−744.
[33] Wang SS, Wang B, Zhang Z, et al. Class-aware sample reweighting optimal transport for multi-source domain adaptation.
Neurocomputing, 2023, 523: 213−223.
[34] Cao ZJ, Ma LJ, Long MS, et al. Partial adversarial domain adaptation. In: Proc. of the 15th European Conf. on Computer Vision.
Munich: Springer, 2018. 139−155.
[35] Cao ZJ, Long MS, Wang JM, et al. Partial transfer learning with selective adversarial networks. In: Proc. of the 2018 IEEE/ CVF
Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 2724−2732.
[36] Cao ZJ, You KC, Long MS, et al. Learning to transfer examples for partial domain adaptation. In: Proc. of the 2019 IEEE/CVF
Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 2980−2989.