Page 137 - 《软件学报》2024年第4期
P. 137

田青  等:  基于自适应权重的多源部分域适应                                                          1715


         [13]    Zhao H, Zhang SH, Wu GH, et al. Adversarial multiple source domain adaptation. In: Advances in Neural Information Processing
             System 31. 2018. 8568−8579.
         [14]    Zhu Y, Zhuang F, Wang  D. Aligning domain-specific distribution and classifier for cross-domain classification from multiple
             sources. In: Proc. of the 2019 AAAI Conf. on Artificial Intelligence. 2019. 5989−5996.
         [15]    Zhang J, Zhou WE, Chen XQ, et al. Multisource selective transfer framework in multiobjective optimization problems. IEEE Trans.
             on Evolutionary Computation, 2019, 24(3): 424−438.
         [16]    Zhao SC, Li B, Xu PF, et al. Madan: Multi-source adversarial domain aggregation network for domain adaptation. Int’l Journal of
             Computer Vision, 2021, 129(8): 2399−2424.
         [17]    Duan LX, Tsang IW, Xu D. Domain transfer multiple kernel learning. IEEE Trans. on Pattern Analysis and Machine Intelligence,
             2012, 34(3): 465−479.
         [18]    Gretton A, Borgwardt KM, Rasch MJ, et al. A kernel two-sample test. Machine Learning Research, 2012, 13(1): 723−773.
         [19]    Dorri F, Ghodsi A. Adapting component analysis. In: Proc. of the 12th IEEE Int ’l Conf. on Data Mining. Brussels: IEEE, 2012.
             846−851.
         [20]    Zhang K, Schölkopf B, Muandet K, et al. Domain adaptation under target and conditional shift. In: Proc. of the 30th Int’l Conf. on
             Machine Learning. 2013. 819−827.
         [21]    Gong MM, Zhang K, Liu TL, et al. Domain adaptation with conditional transferable components. In: Proc. of the 33rd Int’l Conf.
             on Machine Learning. 2016. 2839−2848.
         [22]    Cao K, Tu ZP, Ming Y. Class conditional distribution alignment for domain adaptation. Control Theory and Technology, 2020,
             18(1): 72−80.
         [23]    Pan SJ, Tsang IW, Kwok JT, et al. Domain adaptation via transfer component analysis. IEEE Trans. on Neural Networks, 2011,
             22(2): 199−210.
         [24]    Tzeng E, Hoffman J, Zhang N, et al. Deep domain confusion: Maximizing for domain invariance. arXiv:1412.3474, 2014.
         [25]    Long MS,  Zhu H, Wang  JM,  et al.  Deep transfer learning with joint adaptation  networks.  In: Proc.  of the 34th Int’l Conf.  on
             Machine Learning. arXiv:1605.06636, 2017.
         [26]    Yu CH, Wang JD, Chen YQ, et al. Transfer learning with dynamic adversarial adaptation network. In: Proc. of the 2019 IEEE Int’l
             Conf. on Data Mining. Beijing: IEEE, 2019. 778−786.
         [27]    Ganin Y, Lempitsky V. Unsupervised domain adaptation by backpropagation. In: Proc.of the 32nd Int’l Conf. on Machine Learning.
             arXiv:1409.7495, 2015.
         [28]    Saenko K, Kulis B, Fritz M,  et al.  Adapting visual category models to new domains. In: Proc. of the 11th European Conf. on
             Computer Vision. Heraklion: Springer, 2010. 213−226.
         [29]    Venkateswara H, Eusebio J, Chakraborty S, et al. Deep hashing network for unsupervised domain adaptation. In: Proc. of the 2017
             IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5385−5394.
         [30]    Sun B, Feng J, Saenko K. Return of  frustratingly easy domain adaptation.  In:  Proc. of the 2016 AAAI  Conf. on Artificial
             Intelligence. arXiv:1511.05547, 2015.
         [31]    Saito K, Watanabe K, Ushiku Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proc. of the 2018
             IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 3723−3732.
         [32]    Wang H, Xu MH, Ni BB, et al. Learning to combine: Knowledge aggregation for multi-source domain adaptation. In: Proc. of the
             16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 727−744.
         [33]    Wang SS, Wang B,  Zhang Z,  et al.  Class-aware  sample reweighting optimal transport for multi-source domain adaptation.
             Neurocomputing, 2023, 523: 213−223.
         [34]    Cao ZJ, Ma LJ, Long MS, et al. Partial adversarial domain adaptation. In: Proc. of the 15th European Conf. on Computer Vision.
             Munich: Springer, 2018. 139−155.
         [35]    Cao ZJ, Long MS, Wang JM, et al. Partial transfer learning with selective adversarial networks. In: Proc. of the 2018 IEEE/ CVF
             Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 2724−2732.
         [36]    Cao ZJ, You KC, Long MS, et al. Learning to transfer examples for partial domain adaptation. In: Proc. of the 2019 IEEE/CVF
             Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 2980−2989.
   132   133   134   135   136   137   138   139   140   141   142