Page 136 - 《软件学报》2024年第4期
P. 136

1714                                                       软件学报  2024 年第 35 卷第 4 期






                 模型精度(%)                                模型精度(%)








                               超参数α                                    超参数β
                                 (a)                                                                        (b)
                                            图 3   参数敏感性分析

         4    结   论

             本文解决一个更加实际且更具挑战性的任务——多源部分域适应,  并提出对应的学习框架(AW-MSPDA).
         该场景下,  源域往往包含丰富的信息,  目标域特征可能由多个源域特征表出,  我们使用多样性特征提取方式
         来构建模型,  同时提出域级别的自适应权重来区分不同源域对目标域的贡献.  为了有效实现源域知识的迁移,
         我们提出了多层次的对齐方式来促进正迁移.  此外,  我们利用目标域伪标签设计类级别的自适应权重,  来对
         分类器进行加权以过滤源域中的无关类样本.  我们通过实验,  在多源域适应和多源部分域适应场景下证明了
         该方法的有效性.  在未来,  我们将探索更精确的过滤算法以排除源域中的无关类样本,  从而实现更好的域适
         应性能.

         References:
          [1]    Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks. Machine Learning Research, 2016, 17(1):
             2096−2030.
          [2]    Long MS, Cao Y, Wang JM, et al. Learning transferable features with deep adaptation networks. In: Proc. of the 32nd Int’l Conf.
             on Machine Learning. arXiv:1502.02791, 2015.
          [3]    Tzeng E, Hoffman J, Saenko K, et al. Adversarial discriminative domain adaptation. In: Proc. of the 2017 IEEE/CVF Conf. on
             Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017. 7167−7176.
          [4]    Xu RJ, Chen ZL, Zuo WM, et al. Deep cocktail network: Multi-source unsupervised domain adaptation with category shift. In: Proc.
             of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 3964−3973.
          [5]    Peng XC, Bai QX, Xia X,  et al. Moment matching for multi-source domain adaptation. In: Proc. of the 17th  Int’l Conf. on
             Computer Vision. 2019. 1406−1415.
          [6]    Zhao SC, Wang GZ, Zhang SH, et al. Multi-source distilling domain adaptation. In: Proc. of the 2020 AAAI Conf. on Artificial
             Intelligence. 2020. 12975−12983.
          [7]    Fu YY, Zhang M, Xu X, et al. Partial feature selection and alignment for multi-source domain adaptation. In: Proc. of the 2021
             IEEE/CVF Conf. on Computer Vision and Pattern Recognition. IEEE, 2021. 16654−16663.
          [8]    Ni J, Qiu Q, Chellappa R. Subspace interpolation via dictionary learning for unsupervised domain adaptation. In: Proc. of the 2013
             IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Portland: IEEE, 2013. 692−699.
          [9]    Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks. In: Advances in Neural Information
             Processing Systems 27. 2014. 3320−3328.
         [10]    Blitzer J, Crammer K, Kulesza A, et al. Learning bounds for domain adaptation. In: Advances in Neural Information Processing
             Systems 20. 2007. 129−136.
         [11]    Hoffman J, Mohri M, Zhang NS.  Algorithms and theory  for multiple-source adaptation.  In:  Advances in Neural  Information
             Processing Systems 31. 2018. 8256−8266.
         [12]    Li YT,  Murias M, Major S,  et al.  Extracting relationships  by multi-domain matching.  In:  Advances in Neural Information
             Processing Systems 31. 2018. 6799−6810.
   131   132   133   134   135   136   137   138   139   140   141