Page 123 - 《软件学报》2024年第4期
P. 123

李晴  等:  神经网络结构搜索在脑数据分析领域的研究进展                                                    1701


         [35]     Pang TJ, Zhao SJ, Han JW, et al. Gumbel-softmax based neural architecture search for hierarchical brain networks decomposition.
             Medical Image Analysis, 2022, 82: 102570.
         [36]    Dai HX, Ge FF, Li Q, et al. Optimize CNN model for fmri signal classification via adanet-based neural architecture search. In: Proc.
             of the Int’l Symp. on Biomedical Imaging (ISBI). 2020. 1399−1403.
         [37]     Cortes C, Gonzalvo X, Kuznetsov V, et al. AdaNet: Adaptive structural learning of artificial neural networks. In: Proc. of the Int’l
             Conf. on Machine Learning (PMLR), Vol.70. 2017. 874−883.
         [38]     Sandler M, Howard A, Zhu ML, et al. MobileNetV2: Inverted residuals and linear bottlenecks. In: Proc. of the IEEE/CVF Conf. on
             Computer Vision and Pattern Recognition (CVPR). 2018. 4510−4520.
         [39]     Xu YH, Xie LX, Zhang XP, et al. PC-DARTS: Partial channel connections for memory-efficient architecture search. In: Proc. of
             the Int’l Conf. on Learning Representations (ICLR). 2020. 1−13.
         [40]     Bullmore E, Sporns O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews
             Neuroscience, 2009, 10(3): 186−198.
         [41]     Kriegeskorte N, Douglas PK. Cognitive computational neuroscience. Nature Neuroscience, 2018, 21: 1148−1160.
         [42]     Xu SH, Ren YD, Tao ZY, et al. Hierarchical individual naturalistic functional brain networks with group consistency uncovered by
             a two-stage nas-volumetric sparse dbn framework. eNeuro, 2022, 9(5): 1−11.
         [43]     Li Q, Zhang W, Lv JL, et al. Neural architecture search for optimization of spatial-temporal brain network decomposition. In: Proc.
             of the Medical Image Computing and Computer Assisted Intervention (MICCAI). 2020. 1−10.
         [44]     Tao ZY, Ren YD, Zhang W, et al. Identifying hierarchical individual functional network under naturalistic paradigm via two-stage
             dbn  with  neural architecture search.  In: Proc. of the  Int’l  Symp.  on Image Computing and Digital  Medicine  (ISICDM).  2021.
             130−134.
         [45]     Hu XB, Shen RL, Luo DH, et al. AutoGAN-synthesizer: Neural architecture search for cross-modality MRI synthesis. In: Proc. of
             the Medical Image Computing and Computer Assisted Intervention (MICCAI). 2022. 397−409.
         [46]     Chen HZ, Zhang ZJ, Jin MW, et al. Prediction of dmri signals with neural architecture search. Journal of Neuroscience Methods,
             2022, 365: 109389.
         [47]     Yan JP, Chen S, Zhang YB, et al. Neural architecture search for compressed sensing magnetic resonance image reconstruction.
             Computerized Medical Imaging and Graphics, 2020, 85: 101784.
         [48]     Eslahi  SV, Tao J, Ji  J. ERNAS:  An  evolutionary neural architecture search for magnetic resonance  image reconstructions.
             arXiv:2206.07280, 2023.
         [49]     Kim SW, Kim I, Lim SB, et al. Scalable neural architecture search for 3D medical image segmentation. In: Proc. of the Medical
             Image Computing and Computer Assisted Intervention (MICCAI). 2019. 220−228.
         [50]     Wong KCL,  Moradi  M.  SegNAS3D:  Network  architecture search with derivative-free  global optimization for 3D  image
             segmentation. In: Proc. of the Medical Image Computing and Computer Assisted Intervention (MICCAI). 2019. 393−401.
         [51]     Wang FF. Neural architecture search for gliomas saegmentation on multimodal magnetic resonance imaging. arXiv:2005.06338,
             2020.
         [52]     He YF, Yang D,  Roth  H,  et al. DiNTS:  Differentiable  neural network topology search for 3D  medical image  segmentation.
             IEEE/CVF Computer Vision and Pattern Recognition (CVPR). 2021. 5841−5850.
         [53]     Milesi A, Futrega M, Marcinkiewicz M, et al. Brain tumor segmentation using neural network topology search. In: Proc. of the
             Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 2022. 366−376.
         [54]     Peng C, Myronenko A, Hatamizadeh A, et al. HyperSegNAS: Bridging one-shot neural architecture search with 3D medical image
             segmentation using  hypernet.  In: Proc. of the  IEEE/CVF  Conf.  on Computer Vision and Pattern Recognition (CVPR). 2022.
             20709−20719.
         [55]     Xiang TG, Zhang  CY, Wang  XY,  et al. Towards bi-directional skip  connections  in  encoder-decoder  architectures and  beyond.
             Medical Image Analysis, 2022, 78: 102420.
         [56]     Ye XH, Guo DZ, Ge J,  et al. Comprehensive and clinically accurate head and  neck cancer organs-at-risk  delineation on a
             multi-institutional study. Nature Communications, Nature Publishing Group, 2022, 13(1): 6137.
         [57]     Bae W, Lee SH, Lee YH, et al. Resource optimized neural architecture search for 3D medical image segmentation. In: Proc. of the
             Medical Image Computing and Computer Assisted Intervention (MICCAI). 2019. 228−236.
         [58]     Yu QH, Yang D, Roth H, et al. C2FNAS: Coarse-to-fine neural architecture search for 3D medical image segmentation. In: Proc. of
             the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2020. 4125−4134.
   118   119   120   121   122   123   124   125   126   127   128