Page 122 - 《软件学报》2024年第4期
P. 122

1700                                                       软件学报  2024 年第 35 卷第 4 期

         [10]     Li Q, Wu X, Liu TM. Differentiable neural architecture search for optimal spatial/temporal brain function network decomposition.
             Medical Image Analysis, 2021, 69: 101974.
         [11]     Ellermann J, Garwood M, Hendrich K, et al. Functional imaging of the brain by nuclear magnetic resonance. In: Proc. of the NMR
             in Physiology and Biomedicine. 1994. 137−150.
         [12]     Schcter DL. EEG theta waves and psychological phenomena: a review and analysis. Biological Psychology, 1977, 5(1): 47−82.
         [13]     Madsen PL, Secher NH. Near-infrared oximetry of the brain. Progress in Neurobiology, 1999, 58(6): 541−560.
         [14]     Brown R, Cheng YC, Haacke EM, et al. Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, 1999.
         [15]     Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience, 2006, 1290:
             1−24.
         [16]     Heinz  ER,  DuBois  P, Osborne  D,  et al. Dynamic computed tomography study of the brain. Journal of Computer Assisted
             Tomography, 1979, 3(5): 641−649.
         [17]     Huang H, Hu XT, Zhao Y, et al. Modeling task fmri data via deep convolutional autoencoder. IEEE Trans. on Medical Imaging,
             2018, 37(7): 1551−1561.
         [18]     Zhang W, Zhao SJ, Hu XT, et al. Hierarchical organization of functional brain networks revealed by hybrid spatiotemporal deep
             learning. Brain Connectivity, 2020, 10(2): 72−82.
         [19]     Li C, Zhang ZZ,  Song RC,  et al. EEG-based  emotion recognition via transformer neural architecture search. IEEE Trans. on
             Industrial Informatics, 2023, 19(4): 6016−6025.
         [20]     Nguyen KP, Fatt CC, Treacher A, et al. Predicting response to the antidepressant bupropion using pretreatment fmri. In: Proc. of
             the Int’l Workshop on Machine Learning in Medical Imaging-PRedictive Intelligence in Medicine (MICCAI-PRIME), Vol.11843.
             2019. 53−62.
         [21]     Dai HX, Li Q, Zhao L, et al. Graph representation neural architecture search for optimal spatial/temporal functional brain network
             decomposition. In: Proc. of the Int’l Workshop on Machine Learning in Medical Imaging-Machine Learning in Medical Imaging
             (MICCAI-MLMI). 2022. 279−287.
         [22]     Li Q, Zhang W, Zhao L,  et al. Evolutional neural architecture  search for optimization of spatiotemporal brain network
             decomposition. IEEE Trans. on Bio-medical Engineering, 2022, 69(2): 624−634.
         [23]     Liu HX,  Simonyan  K, Yang  YM. DARTS:  Differentiable  architecture search.  In: Proc.  of the  Int’l  Conf.  on Learning
             Representations (ICLR). 2019. 1−12.
         [24]     Xiao AQ, Shen BL, Shi XJ, et al. Intraoperative glioma grading using neural architecture search and multi-modal imaging. IEEE
             Trans. on Medical Imaging, 2022, 41(10): 2570−2581.
         [25]     Rapaport E, Shriki O, Puzis R. EEGNAS: Neural architecture search for electroencephalography data analysis and decoding. In:
             Proc. of the Int’l Joint Conf. on Artificial Intelligence-human Brain and Artificial Intelligence (IJCAI-HBAI). 2019. 3−20.
         [26]     Dong  HY, Chen D, Zhang  L,  et al. Subject sensitive  eeg  discrimination with  fast  reconstructable  cnn  driven by  reinforcement
             learning: A case study of asd evaluation. Neurocomputing, 2021, 449: 136−145.
         [27]     Du YP, Liu J, Wang X, et al. SSVEP-based emotion recognition for iot via multiobjective neural architecture search. IEEE Internet
             of Things Journal, 2022, 9(21): 21432−21443.
         [28]     Duan YQ, Wang Z, Li Y, et al. Cross task neural architecture search for EEG signal classifications. Neurocomputing, 2022, 545:
             126260.
         [29]     Kong GW, Li C, Peng H, et al. EEG-based sleep stage classification via neural architecture search. IEEE Trans. on Neural Systems
             and Rehabilitation Engineering, 2023, 31: 1075−1085.
         [30]     Wang H, Zhu XS, Chen PY, et al. A gradient-based automatic optimization cnn framework for EEG state recognition. Journal of
             Neural Engineering, 2022, 19(1): 016009.
         [31]     Zhang W, Zhao L,  Li Q,  et al. Identify hierarchical structures from task-based  FMRI  data via  hybrid spatiotemporal neural
             architecture search net. In: Proc. of the Medical Image Computing and Computer Assisted Intervention (MICCAI). 2019. 745−753.
         [32]    Qiang N, Dong QL, Zhang W, et al. Modeling task-based fmri data via deep belief network with neural architecture search. In: Proc.
             of the Computerized Medical Imaging and Graphics. 2020. 101747.
         [33]     Ren YD, Xu SH, Tao  ZY,  et al. Hierarchical spatio-temporal modeling of naturalistic functional magnetic resonance imaging
             signals via two-stage deep belief network with neural architecture search. Frontiers in Neuroscience, 2021, 15: 794955.
         [34]     Duan FX, Cao CH, Gao XP. SA-NAS-BFNR: Spatiotemporal attention neural architecture search for task-based brain functional
             network representation. In: Proc. of the Int’l Conf. on Multimedia Retrieval (ICMR). 2022. 661−667.
   117   118   119   120   121   122   123   124   125   126   127