Page 253 - 《软件学报》2021年第12期
P. 253

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
         Journal of Software,2021,32(12):3917−3928 [doi: 10.13328/j.cnki.jos.006141]   http://www.jos.org.cn
         ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563


                                      ∗
         深度矩阵分解推荐算法

               1
                       1
                              1
         田   震 ,   潘腊梅 ,   尹   朴 ,   王   睿  1,2
         1
          (北京科技大学  计算机与通信工程学院,北京  100083)
         2 (北京科技大学  顺德研究生院,广东  佛山  528300)
         通讯作者:  王睿, E-mail: wangrui@ustb.edu.cn

         摘   要:  协同过滤推荐算法中的矩阵分解因其简单、易于实现,得到了广泛的应用.但是矩阵分解通过简单的线
         性内积建模用户和物品之间的非线性交互关系,限制了模型的表达能力.为此,He 等人提出了广义矩阵分解模型,通
         过非线性激活函数和连接权重,将矩阵分解推广到广义矩阵分解,为模型赋予建模用户和物品间的二阶非线性交互
         关系的能力.但是广义矩阵分解模型是一个浅层模型,并不能很好地建模用户和物品间高阶交互关系,一定程度上可
         能会影响模型性能.受广义矩阵分解模型启发,提出了深度矩阵分解模型(deep matrix factorization,简称 DMF),在广
         义矩阵分解模型的基础上引入隐藏层,利用深层神经网络来学习用户和物品间高阶交互关系.深度矩阵分解模型不
         仅解决了简单内积的线性问题,同时还能够建模用户和物品间的高阶交互,具有很好的表达能力.此外,在 MovieLens
         和 Anime 两个数据集上进行了大量丰富的对比实验,验证了模型的可行性和有效性;同时,通过实验确定了模型的最
         优参数.
         关键词:  协同过滤;线性内积;广义矩阵分解;隐藏层;高阶交互
         中图法分类号: TP311


         中文引用格式:  田震,潘腊梅,尹朴,王睿.深度矩阵分解推荐算法.软件学报,2021,32(12):3917−3928.  http://www.jos.org.cn/
         1000-9825/6141.htm
         英文引用格式: Tian Z, Pan LM, Yin P, Wang  R. Deep  matrix  factorization recommendation  algorithm. Ruan Jian Xue Bao/
         Journal of Software, 2021,32(12):3917−3928 (in Chinese). http://www.jos.org.cn/1000-9825/6141.htm
         Deep Matrix Factorization Recommendation Algorithm

                                       1
                  1
                              1
         TIAN Zhen ,  PAN La-Mei ,   YIN Pu ,   WANG Rui 1,2
         1
          (School of Computer & Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China)
         2
          (Shunde Graduate School, University of Science and Technology Beijing, Foshan 528300, China)
         Abstract:    Matrix factorization in collaborative filtering recommendation algorithms is widely used because of its simplicity and facility
         of implementation, but matrix factorization utilizes a simple linear inner product to model the non-linear interaction between the user and
         the item,  which limits the model's  expressive power.  He et al. proposed a generalized matrix factorization model, which extended the
         matrix factorization to the generalized matrix factorization through a non-linear activation function and connection weights, and gave the
         model the  ability to  model second-order non-linear interactions between users  and items.  Nevertheless, the generalized  matrix
         factorization  model is  a shallow  model  and does not  model the high-order interaction between users  and items, which  may  affect the
         performance of the model to a certain extent. Inspired by the generalized matrix factorization model, this study proposes a deep matrix
         factorization model, abbreviated as DMF. Based on the generalized matrix factorization model, a hidden layer is introduced, and a deep
         neural network is used to learn the higher-order interaction between users and items. The deep matrix factorization model, which has a
         good expression ability, not only solves the linear problem of simple inner product, but also models high-order interactions between users

            ∗  基金项目:  国家自然科学基金(62173158, 61803391);  北京科技大学顺德研究生院科技创新专项资金(BK19CF010, BK20BF012)
             Foundation item: National Natural Science Foundation of China (62173158, 61803391); Scientific and Technological Innovation
         Foundation of Shunde Graduate School, USTB (BK19CF010, BK20BF012)
              收稿时间: 2020-03-31;  修改时间: 2020-06-11;  采用时间: 2020-08-28
   248   249   250   251   252   253   254   255   256   257   258