Page 218 - 《软件学报》2021年第12期
P. 218
3882 Journal of Software 软件学报 Vol.32, No.12, December 2021
[2] Li J, Liu GZ, Gao J. Emotion classification based on EEG signal. Journal of Beijing Information Science &Technology University,
2017,32(2):34−39 (in Chinese with English abstract).
[3] Sun W, Huang J, Li NL, et al. BCI assisted dynamic target selection technique. Ruan Jian Xue Bao/Journal of Software,
2018,29(Suppl.(2)):108−119 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18022.htm
[4] Zhang JR, Wang G. Research on emotion recognition based on EEG signals. Application Research of Computers, 2019,36(11):
3306−3309 (in Chinese with English abstract).
[5] Jiang JF, Zeng Y, Lin ZM, et al. Review on EEG.Based Emotion Assessment. Joumal of Information Engineering University,
2016,17(6):686−693 (in Chinese with English abstract).
[6] Krizhevsky A, Sutskever A, Hinton I, et al. ImageNet classification with deep convolutional neural networks. In: Proc. of the Int’l
Conf. on Neural Information Processing Systems. 2012. 1097−1105.
[7] Graves A. Generating sequences with recurrent neural networks. arXiv preprint arXiv: 1308.0850, 2013.
[8] Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks. In: Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition. IEEE, 2014. 1725−1732.
[9] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998,86(11):
2278−2324.
[10] Qian Z, Li PF, Zhou GD, et al. Speculation and negation scope detection via bidirectional lstm neural networks. Ruan Jian Xue
Bao/Journal of Software, 2018,29(8):2427−2447 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5485.htm
[doi: 10.13328/j.cnki.jos.005485]
[11] Ng JYH, Hausknecht M, Vijayanarasimhan S, et al. Beyond short snippets: Deep networks for video classification. In: Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition. IEEE, 2015. 4694−4702.
[12] Bashivan P, Rish I, Yeasin M, et al. Learning representations from EEG with deep recurrent-convolutional neural networks. In:
Proc. of the Int’l Conf. on Learning Representations. 2015. http://arxiv.org/abs/1511.06448
[13] Hefron RG, Borghetti BJ, Christensen JC, et al. Deep long short-term memory structures model temporal dependencies improving
cognitive workload estimation. Pattern Recognition Letters, 2017,94(C):96−104.
[14] Zhang D, Yao L, Zhang X, et al. EEG-based intention recognition from spatio-temporal representations via cascade and parallel
convolutional recurrent neural networks. arXiv preprint arXiv: 1708.06578, 2017.
[15] Lawhern VJ, Solon AJ, Waytowich NR, et al. EEGNet: A compact convolutional network for EEG-based brain-computer interfaces.
Journal of Neural Engineering, 2018,15(5):056013.
[16] Alhagry S, Aly A, Reda A. Emotion recognition based on EEG using LSTM recurrent neural network. Int’l Journal of Advanced
Computer Science & Applications, 2017,8(10):355−358.
[17] Soleymani M, Asghari-Esfeden S, Fu Y, et al. Analysis of EEG signals and facial expressions for continuous emotion detection.
IEEE Trans. on Affective Computing, 2016,7(1):17−28.
[18] Salama ES, El-Khoribi RA, Shoman ME, et al. EEG-based emotion recognition using 3D convolutional neural networks. Int’l
Journal of Advanced Computer Science and Applications, 2018,9(8):329−337.
[19] Chen JX, Zhang PW, Mao ZJ, et al. Accurate EEG-based emotion recognition on combined features using deep convolutional
neural networks. IEEE Access, 2019,7:44317−44328.
[20] Chen JX, Jiang DM, Zhang YN. A hierarchical bidirectional GRU model with attention for EEG-based emotion classification.
IEEE Access, 2019,7:118530−118540. [doi: 10.1109/ACCESS.2019.2936817]
[21] Koelstra S, Muhl C, Soleymani M, et al. Deap: A database for emotion analysis; using physiological signals. IEEE Trans. on
Affective Computing, 2011,3(1):18−31.
[22] Balconi M, Mazza G. Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked
emotional cues. ERS/ERD and coherence measures of alpha band. Int’l Journal of Psychophysiology, 2009,74(2):158−165.
附中文参考文献:
[1] 卢官明,袁亮,杨文娟,等.基于长短期记忆和卷积神经网络的语音情感识别.南京邮电大学学报(自然科学版),2018,38(5):63−69.
[2] 李娟,刘国忠,高洁.基于脑电信号的情绪分类.北京信息科技大学学报(自然科学版),2017,32(2):34−39.