Page 186 - 《软件学报》2021年第12期
P. 186
3850 Journal of Software 软件学报 Vol.32, No.12, December 2021
[10] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Proc. of the Advances
in Neural Information Processing Systems. 2012. 1097−1105.
[11] Williams RJ, Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1989,
1(2):270−280.
[12] Wang J, Gu Q, Wu J, et al. Traffic speed prediction and congestion source exploration: A deep learning method. In: Proc. of the
IEEE. 2016. 499−508.
[13] Zhang J, Zheng Y, Qi D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Proc. of the AAAI. 2017.
[14] Liu Y, Liu ZY, Lyu C, et al. Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction. IEEE Trans.
on Intelligent Transportation Systems, 2019, 99−108.
[15] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997,9(8):1735−1780.
[16] Xu J, Rahmatizadeh R, Bölöni L, et al. Real-time prediction of taxi demand using recurrent neural networks. IEEE Trans. on
Intelligent Transportation Systems, 2017,19(8):2572−2581.
[17] Fu R, Zhang Z, Li L. Using LSTM and GRU neural network methods for traffic flow prediction. In: Proc. of the 2016 31st Youth
Academic Annual Conf. of Chinese Association of Automation (YAC). 2016. 324−328.
[18] Zhao Z, Chen W, Wu X, et al. LSTM network: A deep learning approach for short-term traffic forecast. IET Intelligent Transport
Systems, 2017,11(2):68−75.
[19] Ke J, Zheng H, Yang H, et al. Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep
learning approach. Transportation Research Part C: Emerging Technologies, 2017,85:591−608.
[20] Zhou X, Shen Y, Zhu Y, et al. Predicting multi-step citywide passenger demands using attention-based neural networks. In: Proc.
of the 11th ACM Int’l Conf. on Web Search and Data Mining. 2018. 736−744.
[21] Xingjian SHI, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In:
Proc. of the Advances in Neural Information Processing Systems. 2015. 802−810.
[22] Yao H, Wu F, Ke J, et al. Deep multi-view spatial-temporal network for taxi demand prediction. In: Proc. of the AAAI. 2018.
[23] Geng X, Li Y, Wang L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In: Proc. of the
AAAI, Vol.33. 2019. 3656−3663.
[24] Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In: Proc. of
the IJCAI. 2018.
[25] Feng N, Guo SN, Song C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting. Ruan
Jian Xue Bao/Journal of Software, 2019,30(3):269−279 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5697.
htm [doi: 10.13328/j.cnki.jos.005697]
[26] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: Proc. of the ICLR. 2017.
[27] Ye M, Yin P, Lee WC, et al. Exploiting geographical influence for collaborative point-of-interest recommendation. In: Proc. of the
34th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. 2011. 325−334.
[28] Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2017.
764−773.
[29] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition. 2016. 770−778.
[30] Oja E. Principal components, minor components, and linear neural networks. Neural Networks, 1992,5(6):927−935.
[31] Berndt DJ, Clifford J. Using dynamic time warping to find patterns in time series. Proc. of the KDD Workshop, 1994,10(16):
359−370.
[32] Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: Proc. of the 22nd ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining. 2016.855−864.
附中文参考文献:
[25] 冯宁,郭晟楠,宋超,等.面向交通流量预测的多组件时空图卷积网络.软件学报,2019,30(3):269−279. http://www.jos.org.cn/1000-
9825/5697.htm [doi: 10.13328/j.cnki.jos.005697]