Page 185 - 《软件学报》2021年第12期
P. 185

于瑞云  等:基于可变形卷积时空网络的乘车需求预测模型                                                      3849


         实验最终采用此参数.
             本文研究发现,时间步长 h 是进行时间特征提取的重要参数.为了确定其对模型性能的影响,所以本文在
         CD2Data 数据集下对 h 的不同取值进行对比实验.具体实验结果见表 2.

                             Table 2  Performance comparison of different sequence length
                                         表 2   不同时间步长性能对比
                                                   MAPE             RMSE
                                   h=2             0.242 9          16.83
                                   h=4             0.225 7          14.57
                                   h=6             0.209 1          13.42
                                   h=8             0.207 7          12.42
                                   h=10            0.208 3          12.59
                                   h=12            0.212 1          13.12

             由表 2 可以得出,模型误差整体上随时间步长 h 的增长而下降.由此可以说明时间步长对时间特征提取的
         重要性.当时间步长为 8 时,模型性能最佳.此外,h 增加到 8 以上时模型性能略有下降.一个潜在的原因是:在考虑
         更长的时间依赖性时,需要学习更多的参数,进而使训练变得更加困难.

         4    总   结

             本文在乘车需求预测场景下对传统时空模型进行改进,提出多组件的可变形卷积时空网络 DCSN.本模型
         将传统时空模型中的卷积神经网络改进为可变形卷积神经网络,使对目标区域的空间特征提取效果得到提升.
         本文还将 POI 对乘车需求的影响因素加入到模型中,弥补了局部 DCN 模型在空间上的距离局限性,使 DCSN 模
         型效果优于其他已有的乘车需求预测方法.
             未来,本文将在两个主要方面对模型进行改进.将更多对乘车需求有显著影响的外部因素进行更合适的建
         模,并将其嵌入到模型中;本文在进行预测时仅考虑了近 4 个小时的历史需求对未来需求的影响,在接下来的研
         究中,本文将进一步考虑长周期(如日或周)历史数据对未来需求的影响并将其加入到模型中,使预测结果更加
         准确.


         致谢   实验数据来自滴滴出行“盖亚”数据开放计划.

         References:
          [1]    Williams BM, Hoel  LA. Modeling and  forecasting  vehicular  traffic  flow as a  seasonal ARIMA  process: Theoretical  basis and
             empirical results. Journal of Transportation Engineering, 2003,129(6):664−672.
          [2]    Li X,  Pan G, Wu  Z,  et  al. Prediction of urban human  mobility using large-scale taxi traces  and its  applications. Frontiers of
             Computer Science, 2012,6(1):111−121.
          [3]    Moreira-Matias L, Gama J, Ferreira M, et al. Predicting taxi–passenger demand using streaming data. IEEE Trans. on Intelligent
             Transportation Systems, 2013,14(3):1393−1402.
          [4]    Abadi A, Rajabioun T, Ioannou PA. Traffic flow prediction for road transportation networks with limited traffic data. IEEE Trans.
             on Intelligent Transportation Systems, 2014,16(2):653−662.
          [5]    Wu F, Wang H, Li Z. Interpreting traffic dynamics using ubiquitous urban data. In: Proc. of the 24th ACM SIGSPATIAL Int’l Conf.
             on Advances in Geographic Information Systems. 2016.
          [6]    Tong Y, Chen Y, Zhou Z, et al. The simpler the better: A unified approach to predicting original taxi demands based on large-scale
             online platforms. In: Proc. of the the 23rd ACM SIGKDD Int’l Conf. 2017.
          [7]    Yi H, Jung HJ, Bae S. Deep neural networks for traffic flow prediction. In: Proc. of the IEEE Int’l Conf. on Big Data & Smart
             Computing. 2017. 328−331.
          [8]    Wang D, Cao W, Li J, et al. DeepSD: Supply-demand prediction for online car-hailing services using deep neural networks. In:
             Proc. of the IEEE 33rd Int’l Conf. on Data Engineering (ICDE). 2017. 243−254.
          [9]    Zhao K, Khryashchev D, Freire J, et al. Predicting taxi demand at high spatial resolution: Approaching the limit of predictability. In:
             Proc. of the IEEE Int’l Conf. on Big Data. 2016. 833−842.
   180   181   182   183   184   185   186   187   188   189   190